1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
pub mod cost_scaling_push_relabel { use std::collections::VecDeque; type Flow = i64; type Cost = i64; const INF_POTENTIAL: f64 = 1e10; const SCALING_FACTOR: f64 = 2.0; #[derive(Clone)] struct Edge { to: usize, rev: usize, flow: Flow, capacity: Flow, cost: Cost, is_rev: bool, } impl Edge { fn residual(&self) -> Flow { self.capacity - self.flow } } #[derive(Clone)] struct Node { excess_flow: Flow, potential: f64, } pub struct Solver { nodes: Vec<Node>, graph: Vec<Vec<Edge>>, active_nodes: VecDeque<usize>, cost_scaling_factor: f64, eps: f64, } impl Solver { pub fn new(num_nodes: usize) -> Self { Self { nodes: vec![ Node { excess_flow: 0, potential: 0.0 }; num_nodes ], graph: vec![vec![]; num_nodes], active_nodes: VecDeque::new(), eps: 1.0, cost_scaling_factor: num_nodes as f64 * 2.0, } } pub fn add_edge(&mut self, from: usize, to: usize, capacity: Flow, cost: Cost) { let rev = self.graph[to].len(); self.graph[from].push(Edge { to, rev, flow: 0, capacity, cost, is_rev: false, }); let rev = self.graph[from].len() - 1; self.graph[to].push(Edge { to: from, rev, flow: capacity, capacity, cost: -cost, is_rev: true, }); self.eps = max(self.eps, cost.abs() as f64 * self.cost_scaling_factor); } pub fn solve(&mut self, source: usize, sink: usize, flow: Flow) -> Flow { self.nodes[source].excess_flow = flow; self.nodes[sink].excess_flow = -flow; while self.eps > 1.0 { for node in 0..self.nodes.len() { for edge in 0..self.graph[node].len() { if self.graph[node][edge].is_rev { continue; } let reduced_cost = self.calc_reduced_cost(node, edge); if reduced_cost < 0.0 && self.graph[node][edge].residual() > 0 { let f = self.graph[node][edge].residual(); self.push_flow(node, edge, f); } if reduced_cost > 0.0 && self.graph[node][edge].flow > 0 { let f = -self.graph[node][edge].flow; self.push_flow(node, edge, f); } } } self.get_active_nodes(); while let Some(node) = self.active_nodes.pop_front() { while self.nodes[node].excess_flow > 0 { if !self.push(node) { self.relabel(node); self.active_nodes.push_back(node); break; } } } self.eps = max(1.0, self.eps / SCALING_FACTOR); } let mut total_cost = 0; for e in self.graph.iter().flat_map(|g| g.iter()) { if e.is_rev { continue; } total_cost += e.flow * e.cost; } total_cost } fn push_flow(&mut self, node: usize, edge: usize, flow: Flow) { self.graph[node][edge].flow += flow; let to = self.graph[node][edge].to; let rev = self.graph[node][edge].rev; let from = node; self.graph[to][rev].flow -= flow; self.nodes[from].excess_flow -= flow; self.nodes[to].excess_flow += flow; } fn calc_reduced_cost(&self, node: usize, edge: usize) -> f64 { let cost = self.graph[node][edge].cost; let from = node; let to = self.graph[node][edge].to; cost as f64 * self.cost_scaling_factor - self.nodes[from].potential + self.nodes[to].potential } fn get_active_nodes(&mut self) { for u in 0..self.nodes.len() { if self.nodes[u].excess_flow > 0 { self.active_nodes.push_back(u); } } } fn push(&mut self, from: usize) -> bool { if self.nodes[from].excess_flow == 0 { return false; } assert!(self.nodes[from].excess_flow > 0); for i in (0..self.graph[from].len()).rev() { if self.graph[from][i].residual() == 0 { continue; } let reduced_cost = self.calc_reduced_cost(from, i); if reduced_cost < 0.0 { let flow = min(self.graph[from][i].residual(), self.nodes[from].excess_flow); self.push_flow(from, i, flow); let to = self.graph[from][i].to; if self.nodes[to].excess_flow > 0 && self.nodes[to].excess_flow <= flow { self.active_nodes.push_back(to); } return true; } } false } fn relabel(&mut self, from: usize) { let mut min_potential = INF_POTENTIAL; for e in self.graph[from].iter() { if e.residual() > 0 { min_potential = min( min_potential, e.cost as f64 * self.cost_scaling_factor + self.nodes[e.to].potential + self.eps, ); } } assert!(min_potential < INF_POTENTIAL); self.nodes[from].potential = min_potential; } } fn min<T: PartialOrd>(a: T, b: T) -> T { if a > b { b } else { a } } fn max<T: PartialOrd>(a: T, b: T) -> T { if a < b { b } else { a } } } #[cfg(test)] mod tests { use crate::graph::cost_scaling_push_relabel::cost_scaling_push_relabel; use crate::graph::min_cost_flow::primal_dual; use crate::utils::test_helper::Tester; #[test] fn solve_grl_6_b() { let tester = Tester::new("./assets/GRL_6_B/in/", "./assets/GRL_6_B/out/"); tester.test_solution(|sc| { let v: usize = sc.read(); let e: usize = sc.read(); let f: i64 = sc.read(); let mut solver = cost_scaling_push_relabel::Solver::new(v); let mut verify = primal_dual::MinimumCostFlowSolver::new(v); for _ in 0..e { let u: usize = sc.read(); let v: usize = sc.read(); let c: i64 = sc.read(); let d: i64 = sc.read(); solver.add_edge(u, v, c, d); verify.add_edge(u, v, c, d); } match verify.solve(0, v - 1, f) { Some(ans) => { sc.write(format!("{}\n", ans)); assert_eq!(ans, solver.solve(0, v - 1, f)); } _ => { sc.write("-1\n"); } } }); } }