1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
pub mod fibonacci_heap {

    fn store_to_map<T, F>(
        map: &mut std::collections::HashMap<usize, Node<T>>,
        mut node: Node<T>,
        ordering: F,
    ) where
        T: Copy + PartialEq,
        F: Fn(T, T) -> T,
    {
        let d = node.children.len();
        match map.remove(&d) {
            Some(mut other) => {
                let node = if (ordering)(node.key, other.key) == node.key {
                    node.children.push(other);
                    node
                } else {
                    other.children.push(node);
                    other
                };
                store_to_map(map, node, ordering);
            }
            None => {
                map.insert(d, node);
            }
        }
    }

    pub struct FibonacciHeap<T, F> {
        pub nodes: Vec<Node<T>>,
        min_index: usize,
        ordering: F,
    }

    impl<T, F> FibonacciHeap<T, F>
    where
        T: Copy + PartialEq,
        F: Fn(T, T) -> T + Copy,
    {
        pub fn new(ordering: F) -> Self {
            Self {
                nodes: Vec::new(),
                min_index: 0,
                ordering,
            }
        }
        pub fn push(&mut self, x: T) {
            let node = Node::new(x);
            self.nodes.push(node);
            let cur_min = self.nodes[self.min_index].key;
            if (self.ordering)(cur_min, x) == x {
                self.min_index = self.nodes.len() - 1;
            }
        }
        pub fn pop(&mut self) -> Option<T> {
            let mut map = std::collections::HashMap::<usize, Node<T>>::new();
            let mut popped = None;

            let mut nodes = Vec::new();
            std::mem::swap(&mut self.nodes, &mut nodes);
            for (i, node) in nodes.into_iter().enumerate() {
                if i == self.min_index {
                    popped = Some(node.key);
                    for node in node.children.into_iter() {
                        store_to_map(&mut map, node, self.ordering);
                    }
                } else {
                    store_to_map(&mut map, node, self.ordering);
                }
            }

            self.nodes = map.into_iter().map(|(_, node)| node).collect();
            if !self.nodes.is_empty() {
                let mut min = self.nodes[0].key;
                for i in 0..self.nodes.len() {
                    if (self.ordering)(min, self.nodes[i].key) == self.nodes[i].key {
                        min = self.nodes[i].key;
                    }
                }

                self.min_index = self
                    .nodes
                    .iter()
                    .enumerate()
                    .find(|(_, node)| node.key == min)
                    .unwrap()
                    .0;
            } else {
                self.min_index = 0;
            }
            popped
        }
    }

    #[derive(Debug)]
    pub struct Node<T> {
        pub key: T,
        pub children: Vec<Node<T>>,
    }

    impl<T> Node<T> {
        fn new(x: T) -> Self {
            Self {
                key: x,
                children: Vec::new(),
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::fibonacci_heap::*;
    use rand::Rng;
    use std::cmp;
    use std::collections::BinaryHeap;

    #[test]
    fn test_fibonacci_heap() {
        let mut min_heap = FibonacciHeap::new(cmp::min);
        min_heap.push(1);
        assert_eq!(min_heap.pop(), Some(1));

        min_heap.push(1);
        min_heap.push(2);
        min_heap.push(3);
        assert_eq!(min_heap.pop(), Some(1));
        assert_eq!(min_heap.pop(), Some(2));
        assert_eq!(min_heap.pop(), Some(3));

        min_heap.push(3);
        min_heap.push(2);
        min_heap.push(1);
        assert_eq!(min_heap.pop(), Some(1));
        assert_eq!(min_heap.pop(), Some(2));
        assert_eq!(min_heap.pop(), Some(3));
    }

    #[test]
    fn compare_to_binary_heap() {
        let mut rng = rand::thread_rng();
        let mut max_heap = FibonacciHeap::new(cmp::max);
        let mut binary_heap = BinaryHeap::new();

        for _ in 0..2000 {
            let x = rng.gen::<usize>() % 10;

            if x == 0 {
                assert_eq!(max_heap.pop(), binary_heap.pop());
            } else {
                let v = rng.gen::<u8>();
                max_heap.push(v);
                binary_heap.push(v);
            }
        }
    }
}