1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
pub mod primal_dual { use std::cmp; use std::collections::BinaryHeap; use std::i64; type Flow = i64; type Cost = i64; const INF: Cost = i64::MAX >> 3; struct Edge { to: usize, capacity: Flow, flow: Flow, cost: Cost, reverse_to: usize, is_reversed: bool, } impl Edge { fn residue(&self) -> Flow { self.capacity - self.flow } } pub struct MinimumCostFlowSolver { graph: Vec<Vec<Edge>>, previous_edge: Vec<(usize, usize)>, } impl MinimumCostFlowSolver { pub fn new(n: usize) -> Self { MinimumCostFlowSolver { graph: (0..n).map(|_| Vec::new()).collect(), previous_edge: vec![(0, 0); n], } } pub fn add_edge(&mut self, from: usize, to: usize, capacity: Flow, cost: Cost) { let reverse_from = self.graph[to].len(); let reverse_to = self.graph[from].len(); self.graph[from].push(Edge { to: to, capacity: capacity, flow: 0, cost: cost, reverse_to: reverse_from, is_reversed: false, }); self.graph[to].push(Edge { to: from, capacity: capacity, flow: capacity, cost: -cost, reverse_to: reverse_to, is_reversed: true, }); } pub fn solve(&mut self, source: usize, sink: usize, mut flow: Flow) -> Option<Flow> { let n = self.graph.len(); let mut result = 0; let mut h = vec![0; n]; let mut q: BinaryHeap<(Cost, usize)> = BinaryHeap::new(); while flow > 0 { let mut dist = vec![INF; n]; dist[source] = 0; q.push((0, source)); while let Some((current_dist, v)) = q.pop() { if dist[v] < current_dist { continue; } for (i, e) in self.graph[v].iter().enumerate() { if e.residue() == 0 { continue; } if dist[e.to] + h[e.to] > current_dist + h[v] + e.cost { dist[e.to] = current_dist + h[v] + e.cost - h[e.to]; self.previous_edge[e.to] = (v, i); q.push((dist[e.to], e.to)); } } } if dist[sink] == INF { return None; } for i in 0..n { h[i] += dist[i]; } let mut df = flow; let mut v = sink; while v != source { let (prev_v, prev_e) = self.previous_edge[v]; df = cmp::min(df, self.graph[prev_v][prev_e].residue()); v = prev_v; } flow -= df; result += df * h[sink]; let mut v = sink; while v != source { let (prev_v, prev_e) = self.previous_edge[v]; self.graph[prev_v][prev_e].flow += df; let reversed_edge_id = self.graph[prev_v][prev_e].reverse_to; self.graph[v][reversed_edge_id].flow -= df; v = prev_v; } } Some(result) } } } #[cfg(test)] mod tests { use super::*; use crate::utils::test_helper::Tester; #[test] fn solve_grl_6_b() { let tester = Tester::new("./assets/GRL_6_B/in/", "./assets/GRL_6_B/out/"); tester.test_solution(|sc| { let v: usize = sc.read(); let e: usize = sc.read(); let f: i64 = sc.read(); let mut solver = primal_dual::MinimumCostFlowSolver::new(v); for _ in 0..e { let u: usize = sc.read(); let v: usize = sc.read(); let c: i64 = sc.read(); let d: i64 = sc.read(); solver.add_edge(u, v, c, d); } let ans = match solver.solve(0, v - 1, f) { Some(flow) => flow, None => -1, }; sc.write(format!("{}\n", ans)); }); } }