1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
pub mod primal_dual {
    use std::cmp;
    use std::collections::BinaryHeap;
    use std::i64;
    type Flow = i64;
    type Cost = i64;
    const INF: Cost = i64::MAX >> 3;
    struct Edge {
        to: usize,
        capacity: Flow,
        flow: Flow,
        cost: Cost,
        reverse_to: usize,
        is_reversed: bool,
    }
    impl Edge {
        fn residue(&self) -> Flow {
            self.capacity - self.flow
        }
    }

    pub struct MinimumCostFlowSolver {
        graph: Vec<Vec<Edge>>,
        previous_edge: Vec<(usize, usize)>,
    }

    impl MinimumCostFlowSolver {
        pub fn new(n: usize) -> Self {
            MinimumCostFlowSolver {
                graph: (0..n).map(|_| Vec::new()).collect(),
                previous_edge: vec![(0, 0); n],
            }
        }

        pub fn add_edge(&mut self, from: usize, to: usize, capacity: Flow, cost: Cost) {
            let reverse_from = self.graph[to].len();
            let reverse_to = self.graph[from].len();
            self.graph[from].push(Edge {
                to: to,
                capacity: capacity,
                flow: 0,
                cost: cost,
                reverse_to: reverse_from,
                is_reversed: false,
            });
            self.graph[to].push(Edge {
                to: from,
                capacity: capacity,
                flow: capacity,
                cost: -cost,
                reverse_to: reverse_to,
                is_reversed: true,
            });
        }

        pub fn solve(&mut self, source: usize, sink: usize, mut flow: Flow) -> Option<Flow> {
            let n = self.graph.len();
            let mut result = 0;
            let mut h = vec![0; n];
            let mut q: BinaryHeap<(Cost, usize)> = BinaryHeap::new();
            while flow > 0 {
                let mut dist = vec![INF; n];
                dist[source] = 0;
                q.push((0, source));
                while let Some((current_dist, v)) = q.pop() {
                    if dist[v] < current_dist {
                        continue;
                    }
                    for (i, e) in self.graph[v].iter().enumerate() {
                        if e.residue() == 0 {
                            continue;
                        }
                        if dist[e.to] + h[e.to] > current_dist + h[v] + e.cost {
                            dist[e.to] = current_dist + h[v] + e.cost - h[e.to];
                            self.previous_edge[e.to] = (v, i);
                            q.push((dist[e.to], e.to));
                        }
                    }
                }

                if dist[sink] == INF {
                    return None;
                }

                for i in 0..n {
                    h[i] += dist[i];
                }
                let mut df = flow;
                let mut v = sink;
                while v != source {
                    let (prev_v, prev_e) = self.previous_edge[v];
                    df = cmp::min(df, self.graph[prev_v][prev_e].residue());
                    v = prev_v;
                }
                flow -= df;
                result += df * h[sink];
                let mut v = sink;
                while v != source {
                    let (prev_v, prev_e) = self.previous_edge[v];
                    self.graph[prev_v][prev_e].flow += df;
                    let reversed_edge_id = self.graph[prev_v][prev_e].reverse_to;
                    self.graph[v][reversed_edge_id].flow -= df;
                    v = prev_v;
                }
            }
            Some(result)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::utils::test_helper::Tester;

    #[test]
    fn solve_grl_6_b() {
        let tester = Tester::new("./assets/GRL_6_B/in/", "./assets/GRL_6_B/out/");
        tester.test_solution(|sc| {
            let v: usize = sc.read();
            let e: usize = sc.read();
            let f: i64 = sc.read();

            let mut solver = primal_dual::MinimumCostFlowSolver::new(v);
            for _ in 0..e {
                let u: usize = sc.read();
                let v: usize = sc.read();
                let c: i64 = sc.read();
                let d: i64 = sc.read();
                solver.add_edge(u, v, c, d);
            }

            let ans = match solver.solve(0, v - 1, f) {
                Some(flow) => flow,
                None => -1,
            };
            sc.write(format!("{}\n", ans));
        });
    }
}