1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
use std::cmp;
use std::cmp::Ordering;

pub struct SuffixArray {
    n: usize,
    s: Vec<u8>,
    array: Vec<usize>,
}

fn compare_node(i: usize, j: usize, k: usize, rank: &Vec<i32>) -> Ordering {
    if rank[i] != rank[j] {
        rank[i].cmp(&rank[j])
    } else {
        let ri = if i + k <= rank.len() { rank[i + k] } else { -1 };
        let rj = if j + k <= rank.len() { rank[j + k] } else { -1 };
        ri.cmp(&rj)
    }
}

impl SuffixArray {
    pub fn new(s: &Vec<u8>) -> SuffixArray {
        let n = s.len();
        let mut rank = vec![0; n + 1];
        let mut array = vec![0; n + 1];

        for i in 0..(n + 1) {
            array[i] = i;
            rank[i] = if i < n { s[i] as i32 } else { -1 };
        }

        let mut tmp = vec![0; n + 1];
        let mut k = 1;
        while k <= n {
            array.sort_by(|a, b| compare_node(*a, *b, k, &rank));

            tmp[array[0]] = 0;
            for i in 1..(n + 1) {
                tmp[array[i]] = tmp[array[i - 1]]
                    + if compare_node(array[i - 1], array[i], k, &rank) == Ordering::Less {
                        1
                    } else {
                        0
                    }
            }
            for i in 0..(n + 1) {
                rank[i] = tmp[i];
            }
            k *= 2;
        }

        SuffixArray {
            n: n,
            array: array,
            s: s.clone(),
        }
    }

    pub fn contains(&self, t: &Vec<u8>) -> bool {
        let b = self.lower_bound(t);
        if b >= self.array.len() {
            false
        } else {
            let start = self.array[b];
            let end = cmp::min(t.len() + start, self.s.len());
            let sub = &self.s[start..end];
            sub.cmp(t) == Ordering::Equal
        }
    }

    fn binary_search<F>(&self, t: &Vec<u8>, f: F) -> usize
    where
        F: Fn(&[u8], &Vec<u8>) -> bool,
    {
        let (mut a, mut b) = (-1, self.n as i32 + 1);
        while b - a > 1 {
            let c = (a + b) / 2;
            let start = self.array[c as usize];
            let end = cmp::min(start + t.len(), self.s.len());
            let sub = &self.s[start..end];
            if f(sub, t) {
                a = c;
            } else {
                b = c;
            }
        }
        b as usize
    }

    pub fn lower_bound(&self, t: &Vec<u8>) -> usize {
        let check_function = |sub: &[u8], s: &Vec<u8>| sub.cmp(s) == Ordering::Less;
        self.binary_search(t, check_function)
    }

    pub fn upper_bound(&self, t: &Vec<u8>) -> usize {
        let check_function = |sub: &[u8], s: &Vec<u8>| sub.cmp(s) != Ordering::Greater;
        self.binary_search(t, check_function)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use data_structure::segment_tree::SegmentTree;
    use std;
    use test_helper::TestCaseProducer;

    #[test]
    fn small_test() {
        let string = "abcdeabcde".to_owned().bytes().collect();
        let sa = SuffixArray::new(&string);
        assert_eq!(sa.lower_bound(&"a".to_owned().bytes().collect()), 1);
        assert_eq!(sa.upper_bound(&"a".to_owned().bytes().collect()), 3);

        assert!(sa.contains(&"abcde".to_owned().bytes().collect()));
        assert!(!sa.contains(&"abce".to_owned().bytes().collect()));
    }

    #[test]
    fn corner_case() {
        let string = "cba".to_owned().bytes().collect();
        let sa = SuffixArray::new(&string);
        assert_eq!(sa.lower_bound(&"c".to_owned().bytes().collect()), 3);
        assert_eq!(sa.upper_bound(&"c".to_owned().bytes().collect()), 4);
    }

    #[test]
    fn jag2014summer_day4_f() {
        let mut input = TestCaseProducer::new_from_directory("./assets/jag2014summer-day4/F/in/");
        let mut output = TestCaseProducer::new_from_directory("./assets/jag2014summer-day4/F/out/");

        while !input.is_empty() {
            let s: Vec<u8> = input.next::<String>().bytes().collect();
            let n = s.len();
            let reverse_s = {
                let mut r = s.clone();
                r.reverse();
                r
            };

            let sa = SuffixArray::new(&s);
            let reverse_sa = SuffixArray::new(&reverse_s);

            let mut rmq = SegmentTree::new(n + 1, std::i64::MAX, |a, b| cmp::min(a, b));
            let mut reverse_rmq = SegmentTree::new(n + 1, std::i64::MAX, |a, b| cmp::min(a, b));
            for i in 0..(n + 1) {
                rmq.update(i, sa.array[i] as i64);
                reverse_rmq.update(i, reverse_sa.array[i] as i64);
            }

            let m = input.next();
            for _ in 0..m {
                let x = input.next::<String>().bytes().collect();
                let y = {
                    let mut y: Vec<u8> = input.next::<String>().bytes().collect();
                    y.reverse();
                    y
                };

                if !sa.contains(&x) {
                    assert_eq!(output.next::<String>(), "0");
                    continue;
                }
                let low = sa.lower_bound(&x);
                let up = sa.upper_bound(&x);

                if !reverse_sa.contains(&y) {
                    assert_eq!(output.next::<String>(), "0");
                    continue;
                }
                let reverse_low = reverse_sa.lower_bound(&y);
                let reverse_up = reverse_sa.upper_bound(&y);

                if low >= up || reverse_low >= reverse_up {
                    assert_eq!(output.next::<String>(), "0");
                }

                let s = rmq.query(low, up) as usize;
                let t = n - reverse_rmq.query(reverse_low, reverse_up) as usize;
                if s + x.len() <= t && s <= t - y.len() {
                    assert_eq!(output.next::<usize>(), t - s);
                } else {
                    assert_eq!(output.next::<String>(), "0");
                }
            }
        }
    }
}