1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
//! `CompactStr` is a compact immutable string type that stores itself on the stack, if possible, and seamlessly
//! interacts with `String`s and `&str`s.
//!
//! ### Memory Layout
//! Normally strings are stored on the heap, since they're dynamically sized. In Rust a `String` consists of
//! three things:
//! 1. A `usize` denoting the length of the string
//! 2. A pointer to a location on the heap where the string is stored
//! 3. A `usize` denoting the capacity of the string
//!
//! On 64-bit architectures this results in 24 bytes being stored on the stack, 12 bytes for 32-bit architectures.
//! For small strings, e.g. < 23 characters

use core::{
    borrow::Borrow,
    cmp::Ordering,
    fmt,
    hash::{Hash, Hasher},
    ops::Deref,
};

mod repr;
use repr::Repr;

#[cfg(feature = "serde")]
mod serde;

#[cfg(test)]
mod tests;

/// A `CompactStr` is a memory efficient immuatable string that can be used almost anywhere a `String`
/// or `&str` can be used.
///
/// ## Using `CompactStr`
/// ```
/// use compact_str::CompactStr;
/// use std::collections::HashMap;
///
/// // CompactStr auto derefs into a str so you can use all methods from `str` that take a `&self`
/// if CompactStr::new("hello world!").is_ascii() {
///     println!("we're all ASCII")
/// }
///
/// // You can use a CompactStr in collections like you would a String or &str
/// let mut map: HashMap<CompactStr, CompactStr> = HashMap::new();
///
/// // directly construct a new `CompactStr`
/// map.insert(CompactStr::new("nyc"), CompactStr::new("empire state building"));
/// // create a `CompactStr` from a `&str`
/// map.insert("sf".into(), "transamerica pyramid".into());
/// // create a `CompactStr` from a `String`
/// map.insert(String::from("sea").into(), String::from("space needle").into());
///
/// fn wrapped_print<T: AsRef<str>>(text: T) {
///     println!("{}", text.as_ref());
/// }
///
/// // CompactStr impls AsRef<str> and Borrow<str>, so it can be used anywhere that excepts a generic string
/// if let Some(building) = map.get("nyc") {
///     wrapped_print(building);
/// }
///
/// // CompactStr can also be directly compared to a String or &str
/// assert_eq!(CompactStr::new("chicago"), "chicago");
/// assert_eq!(CompactStr::new("houston"), String::from("houston"));
/// ```
#[derive(Clone)]
pub struct CompactStr {
    repr: Repr,
}

impl CompactStr {
    #[inline]
    pub fn new<T: AsRef<str>>(text: T) -> Self {
        CompactStr {
            repr: Repr::new(text),
        }
    }

    #[inline]
    pub const fn new_inline(text: &str) -> Self {
        CompactStr {
            repr: Repr::new_const(text),
        }
    }

    #[inline]
    pub fn as_str(&self) -> &str {
        self.repr.as_str()
    }

    #[inline]
    pub fn is_heap_allocated(&self) -> bool {
        self.repr.is_heap_allocated()
    }
}

impl Default for CompactStr {
    #[inline]
    fn default() -> Self {
        CompactStr::new("")
    }
}

impl Deref for CompactStr {
    type Target = str;

    #[inline]
    fn deref(&self) -> &str {
        self.as_str()
    }
}

impl AsRef<str> for CompactStr {
    #[inline]
    fn as_ref(&self) -> &str {
        self.as_str()
    }
}

impl Borrow<str> for CompactStr {
    #[inline]
    fn borrow(&self) -> &str {
        self.as_str()
    }
}

impl Eq for CompactStr {}

impl<T: AsRef<str>> PartialEq<T> for CompactStr {
    fn eq(&self, other: &T) -> bool {
        self.as_str() == other.as_ref()
    }
}

impl PartialEq<CompactStr> for String {
    fn eq(&self, other: &CompactStr) -> bool {
        self.as_str() == other.as_str()
    }
}

impl PartialEq<CompactStr> for &str {
    fn eq(&self, other: &CompactStr) -> bool {
        *self == other.as_str()
    }
}

impl Ord for CompactStr {
    fn cmp(&self, other: &Self) -> Ordering {
        self.as_str().cmp(other.as_str())
    }
}

impl PartialOrd for CompactStr {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Hash for CompactStr {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.as_str().hash(state)
    }
}

impl<'a> From<&'a str> for CompactStr {
    fn from(s: &'a str) -> Self {
        CompactStr::new(s)
    }
}

impl From<String> for CompactStr {
    fn from(s: String) -> Self {
        CompactStr::new(&s)
    }
}

impl<'a> From<&'a String> for CompactStr {
    fn from(s: &'a String) -> Self {
        CompactStr::new(&s)
    }
}

impl fmt::Debug for CompactStr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.as_str(), f)
    }
}

impl fmt::Display for CompactStr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self.as_str(), f)
    }
}

static_assertions::assert_eq_size!(CompactStr, String);