commonware_runtime/utils/buffer/
pool.rs

1use crate::{Blob, Error, RwLock};
2use commonware_utils::StableBuf;
3use futures::{future::Shared, FutureExt};
4use std::{
5    collections::{hash_map::Entry, HashMap},
6    future::Future,
7    num::NonZeroUsize,
8    pin::Pin,
9    sync::{
10        atomic::{AtomicBool, AtomicU64, Ordering},
11        Arc,
12    },
13};
14use tracing::{debug, trace};
15
16// Type alias for the future we'll be storing for each in-flight page fetch.
17//
18// We wrap [Error] in an Arc so it will be cloneable, which is required for the future to be
19// [Shared].
20type PageFetchFut = Shared<Pin<Box<dyn Future<Output = Result<StableBuf, Arc<Error>>> + Send>>>;
21
22/// A [Pool] caches pages of [Blob] data in memory.
23///
24/// A single buffer pool can be used to cache data from multiple blobs by assigning a unique id to
25/// each.
26///
27/// Implements the [Clock](https://en.wikipedia.org/wiki/Page_replacement_algorithm#Clock)
28/// replacement policy, which is a lightweight approximation of LRU. The page `cache` is a circular
29/// list of recently accessed pages, and `clock` is the index of the next page within it to examine
30/// for replacement. When a page needs to be evicted, we start the search at `clock` within `cache`,
31/// searching for the first page with a false reference bit, and setting any skipped page's
32/// reference bit to false along the way.
33pub struct Pool {
34    /// The page cache index, with a key composed of (blob id, page number), that maps each cached
35    /// page to the index of its `cache` entry.
36    ///
37    /// # Invariants
38    ///
39    /// Each `index` entry maps to exactly one `cache` entry, and that cache entry always has a
40    /// matching key.
41    index: HashMap<(u64, u64), usize>,
42
43    /// The page cache.
44    ///
45    /// Each `cache` entry has exactly one corresponding `index` entry.
46    cache: Vec<CacheEntry>,
47
48    /// The Clock replacement policy's clock hand index into `cache`.
49    clock: usize,
50
51    /// The maximum number of pages that will be cached.
52    capacity: usize,
53
54    /// A map of currently executing page fetches to ensure only one task at a time is trying to
55    /// fetch a specific page.
56    page_fetches: HashMap<(u64, u64), PageFetchFut>,
57}
58
59struct CacheEntry {
60    /// The cache key which is composed of the blob id and page number of the page.
61    key: (u64, u64),
62
63    /// A bit indicating whether this page was recently referenced.
64    referenced: AtomicBool,
65
66    /// The cached page itself.
67    data: Vec<u8>,
68}
69
70/// A reference to a [Pool] that can be shared across threads via cloning, along with the page size
71/// that will be used with it. Provides the API for interacting with the buffer pool in a
72/// thread-safe manner.
73#[derive(Clone)]
74pub struct PoolRef {
75    /// The size of each page in the buffer pool.
76    pub(super) page_size: usize,
77
78    /// The next id to assign to a blob that will be managed by this pool.
79    next_id: Arc<AtomicU64>,
80
81    /// Shareable reference to the buffer pool.
82    pool: Arc<RwLock<Pool>>,
83}
84
85impl PoolRef {
86    /// Returns a new [PoolRef] with the given `page_size` and `capacity`.
87    pub fn new(page_size: NonZeroUsize, capacity: NonZeroUsize) -> Self {
88        Self {
89            page_size: page_size.get(),
90            next_id: Arc::new(AtomicU64::new(0)),
91            pool: Arc::new(RwLock::new(Pool::new(capacity.get()))),
92        }
93    }
94
95    /// Returns a unique id for the next blob that will use this buffer pool.
96    pub async fn next_id(&self) -> u64 {
97        self.next_id.fetch_add(1, Ordering::Relaxed)
98    }
99
100    /// Convert an offset into the number of the page it belongs to and the offset within that page.
101    pub fn offset_to_page(&self, offset: u64) -> (u64, usize) {
102        Pool::offset_to_page(self.page_size, offset)
103    }
104
105    /// Read the specified bytes, preferentially from the buffer pool cache. Bytes not found in the
106    /// buffer pool will be read from the provided `blob` and cached for future reads.
107    ///
108    /// # Warning
109    ///
110    /// Attempts to read any of the last (blob_size % page_size) "trailing bytes" of the blob will
111    /// result in a ReadFailed error since the buffer pool only deals with page sized chunks.
112    /// Trailing bytes need to be dealt with outside of the buffer pool. For example,
113    /// [crate::buffer::Append] uses a [crate::buffer::tip::Buffer] to buffer them.
114    pub(super) async fn read<B: Blob>(
115        &self,
116        blob: &B,
117        blob_id: u64,
118        mut buf: &mut [u8],
119        mut offset: u64,
120    ) -> Result<(), Error> {
121        // Read up to a page worth of data at a time from either the buffer pool or the `blob`,
122        // until the requested data is fully read.
123        while !buf.is_empty() {
124            // Read lock the buffer pool and see if we can get (some of) the data from it.
125            {
126                let buffer_pool = self.pool.read().await;
127                let count = buffer_pool.read_at(self.page_size, blob_id, buf, offset);
128                if count != 0 {
129                    offset += count as u64;
130                    buf = &mut buf[count..];
131                    continue;
132                }
133            }
134
135            // Handle page fault.
136            let count = self
137                .read_after_page_fault(blob, blob_id, buf, offset)
138                .await?;
139            offset += count as u64;
140            buf = &mut buf[count..];
141        }
142
143        Ok(())
144    }
145
146    /// Fetch the specified page after encountering a page fault, which may involve retrieving it
147    /// from `blob` & caching the result in `pool`. Returns the number of bytes read, which should
148    /// always be non-zero.
149    async fn read_after_page_fault<B: Blob>(
150        &self,
151        blob: &B,
152        blob_id: u64,
153        buf: &mut [u8],
154        offset: u64,
155    ) -> Result<usize, Error> {
156        assert!(!buf.is_empty());
157
158        let (page_num, offset_in_page) = Pool::offset_to_page(self.page_size, offset);
159        let page_size = self.page_size;
160        trace!(page_num, blob_id, "page fault");
161
162        // Create or clone a future that retrieves the desired page from the underlying blob. This
163        // requires a write lock on the buffer pool since we may need to modify `page_fetches` if
164        // this is the first fetcher.
165        let (fetch_future, is_first_fetcher) = {
166            let mut pool = self.pool.write().await;
167
168            // There's a (small) chance the page was fetched & buffered by another task before we
169            // were able to acquire the write lock, so check the cache before doing anything else.
170            let count = pool.read_at(page_size, blob_id, buf, offset);
171            if count != 0 {
172                return Ok(count);
173            }
174
175            let entry = pool.page_fetches.entry((blob_id, page_num));
176            match entry {
177                Entry::Occupied(o) => {
178                    // Another thread is already fetching this page, so clone its existing future.
179                    (o.get().clone(), false)
180                }
181                Entry::Vacant(v) => {
182                    // Nobody is currently fetching this page, so create a future that will do the work.
183                    let blob = blob.clone();
184                    let future = async move {
185                        blob.read_at(vec![0; page_size], page_num * page_size as u64)
186                            .await
187                            .map_err(Arc::new)
188                    };
189
190                    // Make the future shareable and insert it into the map.
191                    let shareable = future.boxed().shared();
192                    v.insert(shareable.clone());
193
194                    (shareable, true)
195                }
196            }
197        };
198
199        // Await the future and get the page buffer. If this isn't the task that initiated the
200        // fetch, we can return immediately with the result. Note that we cannot return immediately
201        // on error, since we'd bypass the cleanup required of the first fetcher.
202        let fetch_result = fetch_future.await;
203        if !is_first_fetcher {
204            // Copy the requested portion of the page into the buffer and return immediately.
205            let page_buf: Vec<u8> = fetch_result.map_err(|_| Error::ReadFailed)?.into();
206            let bytes_to_copy = std::cmp::min(buf.len(), page_size - offset_in_page);
207            buf[..bytes_to_copy]
208                .copy_from_slice(&page_buf[offset_in_page..offset_in_page + bytes_to_copy]);
209            return Ok(bytes_to_copy);
210        }
211
212        // This is the task that initiated the fetch, so it is responsible for cleaning up the
213        // inserted entry, and caching the page in the buffer pool if the fetch didn't error out.
214        // This requires a write lock on the buffer pool to modify `page_fetches` and cache the
215        // page.
216        let mut pool = self.pool.write().await;
217
218        // Remove the entry from `page_fetches`.
219        let _ = pool.page_fetches.remove(&(blob_id, page_num));
220
221        // Cache the result in the buffer pool.
222        let Ok(page_buf) = fetch_result else {
223            return Err(Error::ReadFailed);
224        };
225        pool.cache(page_size, blob_id, page_buf.as_ref(), page_num);
226
227        // Copy the requested portion of the page into the buffer.
228        let page_buf: Vec<u8> = page_buf.into();
229        let bytes_to_copy = std::cmp::min(buf.len(), page_size - offset_in_page);
230        buf[..bytes_to_copy]
231            .copy_from_slice(&page_buf[offset_in_page..offset_in_page + bytes_to_copy]);
232
233        Ok(bytes_to_copy)
234    }
235
236    /// Cache the provided slice of data in the buffer pool, returning the remaining bytes that
237    /// didn't fill a whole page. `offset` must be page aligned.
238    ///
239    /// # Panics
240    ///
241    /// Panics if `offset` is not page aligned.
242    pub async fn cache(&self, blob_id: u64, mut buf: &[u8], offset: u64) -> usize {
243        let (mut page_num, offset_in_page) = self.offset_to_page(offset);
244        assert_eq!(offset_in_page, 0);
245        {
246            // Write lock the buffer pool.
247            let mut buffer_pool = self.pool.write().await;
248            while buf.len() >= self.page_size {
249                buffer_pool.cache(self.page_size, blob_id, &buf[..self.page_size], page_num);
250                buf = &buf[self.page_size..];
251                page_num += 1;
252            }
253        }
254
255        buf.len()
256    }
257}
258
259impl Pool {
260    /// Return a new empty buffer pool with an initial next-blob id of 0, and a max cache capacity
261    /// of `capacity` pages.
262    ///
263    /// # Panics
264    ///
265    /// Panics if `capacity` is 0.
266    pub fn new(capacity: usize) -> Self {
267        assert!(capacity > 0);
268        Self {
269            index: HashMap::new(),
270            cache: Vec::new(),
271            clock: 0,
272            capacity,
273            page_fetches: HashMap::new(),
274        }
275    }
276
277    /// Convert an offset into the number of the page it belongs to and the offset within that page.
278    fn offset_to_page(page_size: usize, offset: u64) -> (u64, usize) {
279        (
280            offset / page_size as u64,
281            (offset % page_size as u64) as usize,
282        )
283    }
284
285    /// Attempt to fetch blob data starting at `offset` from the buffer pool. Returns the number of
286    /// bytes read, which could be 0 if the first page in the requested range isn't buffered, and is
287    /// never more than `self.page_size` or the length of `buf`. The returned bytes won't cross a
288    /// page boundary, so multiple reads may be required even if all data in the desired range is
289    /// buffered.
290    fn read_at(&self, page_size: usize, blob_id: u64, buf: &mut [u8], offset: u64) -> usize {
291        let (page_num, offset_in_page) = Self::offset_to_page(page_size, offset);
292        let page_index = self.index.get(&(blob_id, page_num));
293        let Some(&page_index) = page_index else {
294            return 0;
295        };
296        let page = &self.cache[page_index];
297        assert_eq!(page.key, (blob_id, page_num));
298        page.referenced.store(true, Ordering::Relaxed);
299        let page = &page.data;
300
301        let bytes_to_copy = std::cmp::min(buf.len(), page_size - offset_in_page);
302        buf[..bytes_to_copy].copy_from_slice(&page[offset_in_page..offset_in_page + bytes_to_copy]);
303
304        bytes_to_copy
305    }
306
307    /// Put the given `page` into the buffer pool.
308    ///
309    /// # Panics
310    ///
311    /// Panics if the provided page is not exactly PAGE_SIZE bytes long.
312    fn cache(&mut self, page_size: usize, blob_id: u64, page: &[u8], page_num: u64) {
313        assert_eq!(page.len(), page_size);
314
315        let key = (blob_id, page_num);
316        let index_entry = self.index.entry(key);
317        if let Entry::Occupied(index_entry) = index_entry {
318            // This case can result when a blob is truncated across a page boundary, and later grows
319            // back to (beyond) its original size. It will also become expected behavior once we
320            // allow cached pages to be writable.
321            debug!(blob_id, page_num, "updating duplicate page");
322
323            // Update the stale data with the new page.
324            let entry = &mut self.cache[*index_entry.get()];
325            assert_eq!(entry.key, key);
326            entry.referenced.store(true, Ordering::Relaxed);
327            entry.data.copy_from_slice(page);
328            return;
329        }
330
331        if self.cache.len() < self.capacity {
332            self.index.insert(key, self.cache.len());
333            self.cache.push(CacheEntry {
334                key,
335                referenced: AtomicBool::new(true),
336                data: page.into(),
337            });
338            return;
339        }
340
341        // Cache is full, find a page to evict.
342        while self.cache[self.clock].referenced.load(Ordering::Relaxed) {
343            self.cache[self.clock]
344                .referenced
345                .store(false, Ordering::Relaxed);
346            self.clock = (self.clock + 1) % self.cache.len();
347        }
348
349        // Evict the page by replacing it with the new page.
350        let entry = &mut self.cache[self.clock];
351        entry.referenced.store(true, Ordering::Relaxed);
352        assert!(self.index.remove(&entry.key).is_some());
353        self.index.insert(key, self.clock);
354        entry.key = key;
355        entry.data.copy_from_slice(page);
356
357        // Move the clock forward.
358        self.clock = (self.clock + 1) % self.cache.len();
359    }
360}
361
362#[cfg(test)]
363mod tests {
364    use super::*;
365    use crate::{deterministic, Runner as _, Storage as _};
366    use commonware_macros::test_traced;
367    use commonware_utils::NZUsize;
368
369    const PAGE_SIZE: usize = 1024;
370
371    #[test_traced]
372    fn test_pool_basic() {
373        let mut pool: Pool = Pool::new(10);
374
375        let mut buf = vec![0; PAGE_SIZE];
376        let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, 0);
377        assert_eq!(bytes_read, 0);
378
379        pool.cache(PAGE_SIZE, 0, &[1; PAGE_SIZE], 0);
380        let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, 0);
381        assert_eq!(bytes_read, PAGE_SIZE);
382        assert_eq!(buf, [1; PAGE_SIZE]);
383
384        // Test replacement -- should log a duplicate page warning but still work.
385        pool.cache(PAGE_SIZE, 0, &[2; PAGE_SIZE], 0);
386        let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, 0);
387        assert_eq!(bytes_read, PAGE_SIZE);
388        assert_eq!(buf, [2; PAGE_SIZE]);
389
390        // Test exceeding the cache capacity.
391        for i in 0u64..11 {
392            pool.cache(PAGE_SIZE, 0, &[i as u8; PAGE_SIZE], i);
393        }
394        // Page 0 should have been evicted.
395        let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, 0);
396        assert_eq!(bytes_read, 0);
397        // Page 1-10 should be in the cache.
398        for i in 1u64..11 {
399            let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, i * PAGE_SIZE as u64);
400            assert_eq!(bytes_read, PAGE_SIZE);
401            assert_eq!(buf, [i as u8; PAGE_SIZE]);
402        }
403
404        // Test reading from an unaligned offset by adding 2 to an aligned offset. The read
405        // should be 2 bytes short of a full page.
406        let mut buf = vec![0; PAGE_SIZE];
407        let bytes_read = pool.read_at(PAGE_SIZE, 0, &mut buf, PAGE_SIZE as u64 + 2);
408        assert_eq!(bytes_read, PAGE_SIZE - 2);
409        assert_eq!(&buf[..PAGE_SIZE - 2], [1; PAGE_SIZE - 2]);
410    }
411
412    #[test_traced]
413    fn test_pool_read_with_blob() {
414        // Initialize the deterministic context
415        let executor = deterministic::Runner::default();
416        // Start the test within the executor
417        executor.start(|context| async move {
418            // Populate a blob with 11 consecutive pages of data.
419            let (blob, size) = context
420                .open("test", "blob".as_bytes())
421                .await
422                .expect("Failed to open blob");
423            assert_eq!(size, 0);
424            for i in 0..11 {
425                let buf = vec![i as u8; PAGE_SIZE];
426                blob.write_at(buf, i * PAGE_SIZE as u64).await.unwrap();
427            }
428
429            // Fill the buffer pool with the blob's data.
430            let pool_ref = PoolRef::new(NZUsize!(PAGE_SIZE), NZUsize!(10));
431            assert_eq!(pool_ref.next_id().await, 0);
432            assert_eq!(pool_ref.next_id().await, 1);
433            for i in 0..11 {
434                let mut buf = vec![0; PAGE_SIZE];
435                pool_ref
436                    .read(&blob, 0, &mut buf, i * PAGE_SIZE as u64)
437                    .await
438                    .unwrap();
439                assert_eq!(buf, [i as u8; PAGE_SIZE]);
440            }
441
442            // Repeat the read to exercise reading from the buffer pool. Must start at 1 because
443            // page 0 should be evicted.
444            for i in 1..11 {
445                let mut buf = vec![0; PAGE_SIZE];
446                pool_ref
447                    .read(&blob, 0, &mut buf, i * PAGE_SIZE as u64)
448                    .await
449                    .unwrap();
450                assert_eq!(buf, [i as u8; PAGE_SIZE]);
451            }
452
453            // Cleanup.
454            blob.sync().await.unwrap();
455        });
456    }
457}