commonware_runtime/utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
//! Utility functions for interacting with any runtime.
use crate::Error;
#[cfg(test)]
use crate::{Runner, Spawner};
#[cfg(test)]
use futures::stream::{FuturesUnordered, StreamExt};
use futures::{
channel::oneshot,
future::Shared,
stream::{AbortHandle, Abortable},
FutureExt,
};
use prometheus_client::metrics::gauge::Gauge;
use std::{
any::Any,
future::Future,
panic::{resume_unwind, AssertUnwindSafe},
pin::Pin,
sync::{Arc, Once},
task::{Context, Poll},
};
use tracing::error;
/// Yield control back to the runtime.
pub async fn reschedule() {
struct Reschedule {
yielded: bool,
}
impl Future for Reschedule {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
if self.yielded {
Poll::Ready(())
} else {
self.yielded = true;
cx.waker().wake_by_ref();
Poll::Pending
}
}
}
Reschedule { yielded: false }.await
}
fn extract_panic_message(err: &(dyn Any + Send)) -> String {
if let Some(s) = err.downcast_ref::<&str>() {
s.to_string()
} else if let Some(s) = err.downcast_ref::<String>() {
s.clone()
} else {
format!("{:?}", err)
}
}
/// Handle to a spawned task.
pub struct Handle<T>
where
T: Send + 'static,
{
aborter: AbortHandle,
receiver: oneshot::Receiver<Result<T, Error>>,
running: Gauge,
once: Arc<Once>,
}
impl<T> Handle<T>
where
T: Send + 'static,
{
pub(crate) fn init<F>(
f: F,
running: Gauge,
catch_panic: bool,
) -> (impl Future<Output = ()>, Self)
where
F: Future<Output = T> + Send + 'static,
{
// Increment running counter
running.inc();
// Initialize channels to handle result/abort
let once = Arc::new(Once::new());
let (sender, receiver) = oneshot::channel();
let (aborter, abort_registration) = AbortHandle::new_pair();
// Wrap the future to handle panics
let wrapped = {
let once = once.clone();
let running = running.clone();
async move {
// Run future
let result = AssertUnwindSafe(f).catch_unwind().await;
// Decrement running counter
once.call_once(|| {
running.dec();
});
// Handle result
let result = match result {
Ok(result) => Ok(result),
Err(err) => {
if !catch_panic {
resume_unwind(err);
}
let err = extract_panic_message(&*err);
error!(?err, "task panicked");
Err(Error::Exited)
}
};
let _ = sender.send(result);
}
};
// Make the future abortable
let abortable = Abortable::new(wrapped, abort_registration);
(
abortable.map(|_| ()),
Self {
aborter,
receiver,
running,
once,
},
)
}
pub fn abort(&self) {
// Stop task
self.aborter.abort();
// Decrement running counter
self.once.call_once(|| {
self.running.dec();
});
}
}
impl<T> Future for Handle<T>
where
T: Send + 'static,
{
type Output = Result<T, Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut self.receiver)
.poll(cx)
.map(|res| res.map_err(|_| Error::Closed).and_then(|r| r))
}
}
/// A one-time broadcast that can be awaited by many tasks. It is often used for
/// coordinating shutdown across many tasks.
///
/// To minimize the overhead of tracking outstanding signals (which only return once),
/// it is recommended to wait on a reference to it (i.e. `&mut signal`) instead of
/// cloning it multiple times in a given task (i.e. in each iteration of a loop).
pub type Signal = Shared<oneshot::Receiver<i32>>;
/// Coordinates a one-time signal across many tasks.
///
/// # Example
///
/// ## Basic Usage
///
/// ```rust
/// use commonware_runtime::{Spawner, Runner, Signaler, deterministic::Executor};
///
/// let (executor, _, _) = Executor::default();
/// executor.start(async move {
/// // Setup signaler and get future
/// let (mut signaler, signal) = Signaler::new();
///
/// // Signal shutdown
/// signaler.signal(2);
///
/// // Wait for shutdown in task
/// let sig = signal.await.unwrap();
/// println!("Received signal: {}", sig);
/// });
/// ```
///
/// ## Advanced Usage
///
/// While `Futures::Shared` is efficient, there is still meaningful overhead
/// to cloning it (i.e. in each iteration of a loop). To avoid
/// a performance regression from introducing `Signaler`, it is recommended
/// to wait on a reference to `Signal` (i.e. `&mut signal`).
///
/// ```rust
/// use commonware_macros::select;
/// use commonware_runtime::{Clock, Spawner, Runner, Signaler, deterministic::Executor};
/// use futures::channel::oneshot;
/// use std::time::Duration;
///
/// let (executor, context, _) = Executor::default();
/// executor.start(async move {
/// // Setup signaler and get future
/// let (mut signaler, mut signal) = Signaler::new();
///
/// // Loop on the signal until resolved
/// let (tx, rx) = oneshot::channel();
/// context.spawn("task", {
/// let context = context.clone();
/// async move {
/// loop {
/// // Wait for signal or sleep
/// select! {
/// sig = &mut signal => {
/// println!("Received signal: {}", sig.unwrap());
/// break;
/// },
/// _ = context.sleep(Duration::from_secs(1)) => {},
/// };
/// }
/// let _ = tx.send(());
/// }
/// });
///
/// // Send signal
/// signaler.signal(9);
///
/// // Wait for task
/// rx.await.expect("shutdown signaled");
/// });
/// ```
pub struct Signaler {
tx: Option<oneshot::Sender<i32>>,
}
impl Signaler {
/// Create a new `Signaler`.
///
/// Returns a `Signaler` and a `Signal` that will resolve when `signal` is called.
pub fn new() -> (Self, Signal) {
let (tx, rx) = oneshot::channel();
(Self { tx: Some(tx) }, rx.shared())
}
/// Resolve the `Signal` for all waiters (if not already resolved).
pub fn signal(&mut self, value: i32) {
if let Some(stop_tx) = self.tx.take() {
let _ = stop_tx.send(value);
}
}
}
#[cfg(test)]
async fn task(i: usize) -> usize {
for _ in 0..5 {
reschedule().await;
}
i
}
#[cfg(test)]
pub fn run_tasks(tasks: usize, runner: impl Runner, context: impl Spawner) -> Vec<usize> {
runner.start(async move {
// Randomly schedule tasks
let mut handles = FuturesUnordered::new();
for i in 0..tasks - 1 {
handles.push(context.spawn("test", task(i)));
}
handles.push(context.spawn("test", task(tasks - 1)));
// Collect output order
let mut outputs = Vec::new();
while let Some(result) = handles.next().await {
outputs.push(result.unwrap());
}
assert_eq!(outputs.len(), tasks);
outputs
})
}