1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
//! Utilities for a DKG/Resharing procedure.
/// Assuming that `n = 3f + 1`, compute the minimum required threshold to satisfy `t = 2f + 1`.
pub fn threshold(n: u32) -> Option<u32> {
let f = (n - 1) / 3;
if f == 0 {
return None;
}
Some((2 * f) + 1)
}
/// Assuming that `t = 2f + 1`, compute the maximum number of shares that can be revealed
/// without allowing an adversary of size `f` to reconstruct the secret.
pub fn max_reveals(t: u32) -> u32 {
(t - 1) / 2
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_threshold() {
// Test case 0: n = 3 (3*0 + 1)
assert_eq!(threshold(3), None);
// Test case 1: n = 4 (3*1 + 1)
assert_eq!(threshold(4), Some(3));
// Test case 2: n = 7 (3*2 + 1)
assert_eq!(threshold(7), Some(5));
// Test case 3: n = 10 (3*3 + 1)
assert_eq!(threshold(10), Some(7));
}
#[test]
fn test_max_reveals() {
// Test case 0: t = 2 (2*0 + 1)
assert_eq!(max_reveals(2), 0);
// Test case 1: t = 3 (2*1 + 1)
assert_eq!(max_reveals(3), 1);
// Test case 2: t = 5 (2*2 + 1)
assert_eq!(max_reveals(5), 2);
// Test case 3: t = 7 (2*3 + 1)
assert_eq!(max_reveals(7), 3);
}
}