commonware_cryptography/bls12381/primitives/poly.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//! Polynomial operations over the BLS12-381 scalar field.
//!
//! # Warning
//!
//! The security of the polynomial operations is critical for the overall
//! security of the threshold schemes. Ensure that the scalar field operations
//! are performed over the correct field and that all elements are valid.
use crate::bls12381::primitives::{
group::{self, Element, Scalar},
Error,
};
use bytes::BufMut;
use commonware_utils::SizedSerialize;
use rand::{rngs::OsRng, RngCore};
use std::collections::BTreeMap;
/// Private polynomials are used to generate secret shares.
pub type Private = Poly<group::Private>;
/// Public polynomials represent commitments to secrets on a private polynomial.
pub type Public = Poly<group::Public>;
/// Signature polynomials are used in threshold signing (where a signature
/// is interpolated using at least `threshold` evaluations).
pub type Signature = Poly<group::Signature>;
/// The default partial signature type (G2).
pub type PartialSignature = Eval<group::Signature>;
/// The default partial signature length (G2).
pub const PARTIAL_SIGNATURE_LENGTH: usize = u32::SERIALIZED_LEN + group::SIGNATURE_LENGTH;
/// A polynomial evaluation at a specific index.
#[derive(Debug, Clone)]
pub struct Eval<C: Element> {
pub index: u32,
pub value: C,
}
impl<C: Element> Eval<C> {
/// Canonically serializes the evaluation.
pub fn serialize(&self) -> Vec<u8> {
let value_serialized = self.value.serialize();
let mut bytes = Vec::with_capacity(u32::SERIALIZED_LEN + value_serialized.len());
bytes.put_u32(self.index);
bytes.extend_from_slice(&value_serialized);
bytes
}
/// Deserializes a canonically encoded evaluation.
pub fn deserialize(bytes: &[u8]) -> Option<Self> {
let index = u32::from_be_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]);
let value = C::deserialize(&bytes[u32::SERIALIZED_LEN..])?;
Some(Self { index, value })
}
}
/// A polynomial that is using a scalar for the variable x and a generic
/// element for the coefficients.
///
/// The coefficients must be able to multiply the type of the variable,
/// which is always a scalar.
#[derive(Debug, Clone, PartialEq, Eq)]
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L24-L28
pub struct Poly<C>(Vec<C>);
/// Returns a new scalar polynomial of the given degree where each coefficients is
/// sampled at random using kernel randomness.
///
/// In the context of secret sharing, the threshold is the degree + 1.
pub fn new(degree: u32) -> Poly<Scalar> {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L46-L52
new_from(degree, &mut OsRng)
}
// Returns a new scalar polynomial of the given degree where each coefficient is
// sampled at random from the provided RNG.
///
/// In the context of secret sharing, the threshold is the degree + 1.
pub fn new_from<R: RngCore>(degree: u32, rng: &mut R) -> Poly<Scalar> {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L46-L52
let coeffs = (0..=degree).map(|_| Scalar::rand(rng)).collect::<Vec<_>>();
Poly::<Scalar>(coeffs)
}
impl<C> Poly<C> {
/// Creates a new polynomial from the given coefficients.
pub fn from(c: Vec<C>) -> Self {
Self(c)
}
/// Returns the constant term of the polynomial.
pub fn constant(&self) -> &C {
&self.0[0]
}
/// Returns the degree of the polynomial
pub fn degree(&self) -> u32 {
(self.0.len() - 1) as u32 // check size in deserialize, safe to cast
}
/// Returns the number of required shares to reconstruct the polynomial.
///
/// This will be the threshold
pub fn required(&self) -> u32 {
self.0.len() as u32 // check size in deserialize, safe to cast
}
}
impl<C: Element> Poly<C> {
/// Commits the scalar polynomial to the group and returns a polynomial over
/// the group.
///
/// This is done by multiplying each coefficient of the polynomial with the
/// group's generator.
pub fn commit(commits: Poly<Scalar>) -> Self {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L322-L340
let commits = commits
.0
.iter()
.map(|c| {
let mut commitment = C::one();
commitment.mul(c);
commitment
})
.collect::<Vec<C>>();
Poly::<C>::from(commits)
}
/// Returns a zero polynomial.
pub fn zero() -> Self {
Self::from(vec![C::zero()])
}
/// Returns the given coefficient at the requested index.
///
/// It panics if the index is out of range.
pub fn get(&self, i: u32) -> C {
self.0[i as usize].clone()
}
/// Set the given element at the specified index.
///
/// It panics if the index is out of range.
pub fn set(&mut self, index: u32, value: C) {
self.0[index as usize] = value;
}
/// Performs polynomial addition in place
pub fn add(&mut self, other: &Self) {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L87-L95
// if we have a smaller degree we should pad with zeros
if self.0.len() < other.0.len() {
self.0.resize(other.0.len(), C::zero())
}
self.0.iter_mut().zip(&other.0).for_each(|(a, b)| a.add(b))
}
/// Canonically serializes the polynomial.
pub fn serialize(&self) -> Vec<u8> {
let mut bytes = Vec::new();
for c in &self.0 {
bytes.extend_from_slice(&c.serialize());
}
bytes
}
/// Deserializes a canonically encoded polynomial.
pub fn deserialize(bytes: &[u8], expected: u32) -> Option<Self> {
let expected = expected as usize;
let mut coeffs = Vec::with_capacity(expected);
for chunk in bytes.chunks_exact(C::size()) {
if coeffs.len() >= expected {
return None;
}
let c = C::deserialize(chunk)?;
coeffs.push(c);
}
if coeffs.len() != expected {
return None;
}
Some(Self(coeffs))
}
/// Evaluates the polynomial at the specified value.
pub fn evaluate(&self, i: u32) -> Eval<C> {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L111-L129
// We add +1 because we must never evaluate the polynomial at its first point
// otherwise it reveals the "secret" value after a reshare (where the constant
// term is set to be the secret of the previous dealing).
let mut xi = Scalar::zero();
xi.set_int(i + 1);
// Use Horner's method to evaluate the polynomial
let res = self.0.iter().rev().fold(C::zero(), |mut sum, coeff| {
sum.mul(&xi);
sum.add(coeff);
sum
});
Eval {
value: res,
index: i,
}
}
/// Recover the polynomial's constant term given at least `t` polynomial evaluations.
pub fn recover(t: u32, mut evals: Vec<Eval<C>>) -> Result<C, Error> {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/a714310be76620e10e8797d6637df64011926430/crates/threshold-bls/src/poly.rs#L131-L165
// Ensure there are enough shares
let t = t as usize;
if evals.len() < t {
return Err(Error::InvalidRecovery);
}
// Convert the first `t` sorted shares into scalars
let mut err = None;
evals.sort_by(|a, b| a.index.cmp(&b.index));
let xs = evals
.into_iter()
.take(t)
.fold(BTreeMap::new(), |mut m, sh| {
let mut xi = Scalar::zero();
xi.set_int(sh.index + 1);
if m.insert(sh.index, (xi, sh.value)).is_some() {
err = Some(Error::DuplicateEval);
}
m
});
if let Some(e) = err {
return Err(e);
}
// Iterate over all indices and for each multiply the lagrange basis
// with the value of the share
let mut acc = C::zero();
for (i, xi) in &xs {
let mut yi = xi.1.clone();
let mut num = Scalar::one();
let mut den = Scalar::one();
for (j, xj) in &xs {
if i == j {
continue;
}
// xj - 0
num.mul(&xj.0);
// 1 / (xj - xi)
let mut tmp = xj.0;
tmp.sub(&xi.0);
den.mul(&tmp);
}
let inv = den.inverse().ok_or(Error::NoInverse)?;
num.mul(&inv);
yi.mul(&num);
acc.add(&yi);
}
Ok(acc)
}
}
/// Returns the public key of the polynomial (constant term).
pub fn public(public: &Public) -> group::Public {
*public.constant()
}
#[cfg(test)]
pub mod tests {
// Reference: https://github.com/celo-org/celo-threshold-bls-rs/blob/b0ef82ff79769d085a5a7d3f4fe690b1c8fe6dc9/crates/threshold-bls/src/poly.rs#L355-L604
use super::*;
use crate::bls12381::primitives::group::{Scalar, G2};
#[test]
fn poly_degree() {
let s = 5;
let p = new(s);
assert_eq!(p.degree(), s);
}
#[test]
fn add_zero() {
let p1 = new(3);
let p2 = Poly::<Scalar>::zero();
let mut res = p1.clone();
res.add(&p2);
assert_eq!(res, p1);
let p1 = Poly::<Scalar>::zero();
let p2 = new(3);
let mut res = p1;
res.add(&p2);
assert_eq!(res, p2);
}
#[test]
fn interpolation_insufficient_shares() {
let degree = 4;
let threshold = degree + 1;
let poly = new(degree);
let shares = (0..threshold - 1)
.map(|i| poly.evaluate(i))
.collect::<Vec<_>>();
Poly::recover(threshold, shares).unwrap_err();
}
#[test]
fn commit() {
let secret = new(5);
let coeffs = secret.0.clone();
let commitment = coeffs
.iter()
.map(|coeff| {
let mut p = G2::one();
p.mul(coeff);
p
})
.collect::<Vec<_>>();
let commitment = Poly::from(commitment);
assert_eq!(commitment, Poly::commit(secret));
}
fn pow(base: Scalar, pow: usize) -> Scalar {
let mut res = Scalar::one();
for _ in 0..pow {
res.mul(&base)
}
res
}
#[test]
fn addition() {
for deg1 in 0..100u32 {
for deg2 in 0..100u32 {
let p1 = new(deg1);
let p2 = new(deg2);
let mut res = p1.clone();
res.add(&p2);
let (larger, smaller) = if p1.degree() > p2.degree() {
(&p1, &p2)
} else {
(&p2, &p1)
};
for i in 0..larger.degree() + 1 {
let i = i as usize;
if i < (smaller.degree() + 1) as usize {
let mut coeff_sum = p1.0[i];
coeff_sum.add(&p2.0[i]);
assert_eq!(res.0[i], coeff_sum);
} else {
assert_eq!(res.0[i], larger.0[i]);
}
}
assert_eq!(
res.degree(),
larger.degree(),
"deg1={}, deg2={}",
deg1,
deg2
);
}
}
}
#[test]
fn interpolation() {
for degree in 0..100u32 {
for num_evals in 0..100u32 {
let poly = new(degree);
let expected = poly.0[0];
let shares = (0..num_evals).map(|i| poly.evaluate(i)).collect::<Vec<_>>();
let recovered_constant = Poly::recover(num_evals, shares).unwrap();
if num_evals > degree {
assert_eq!(
expected, recovered_constant,
"degree={}, num_evals={}",
degree, num_evals
);
} else {
assert_ne!(
expected, recovered_constant,
"degree={}, num_evals={}",
degree, num_evals
);
}
}
}
}
#[test]
fn evaluate() {
for d in 0..100u32 {
for idx in 0..100_u32 {
let mut x = Scalar::zero();
x.set_int(idx + 1);
let p1 = new(d);
let evaluation = p1.evaluate(idx).value;
let coeffs = p1.0;
let mut sum = coeffs[0];
for (i, coeff) in coeffs
.into_iter()
.enumerate()
.take((d + 1) as usize)
.skip(1)
{
let xi = pow(x, i);
let mut var = coeff;
var.mul(&xi);
sum.add(&var);
}
assert_eq!(sum, evaluation, "degree={}, idx={}", d, idx);
}
}
}
}