commonware_cryptography/bls12381/dkg/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
//! Distributed Key Generation (DKG) and Resharing protocol for the BLS12-381 curve.
//!
//! This crate implements a Distributed Key Generation (DKG) and Resharing protocol
//! for the BLS12-381 curve. Unlike many other constructions, this scheme only requires
//! participants to publicly post shares during a "forced reveal" (when a given dealer
//! does not distribute a share required for a party to recover their secret). Outside of this
//! reveal, all shares are communicated directly between a dealer and recipient over an
//! encrypted channel (which can be instantiated with <https://docs.rs/commonware-p2p>).
//!
//! The DKG is based on the "Joint-Feldman" construction from "Secure Distributed Key
//! Generation for Discrete-Log Based Cryptosystems" (GJKR99) and resharing is based
//! on the construction provided in "Redistributing secret shares to new access structures
//! and its applications" (Desmedt97).
//!
//! # Protocol
//!
//! The protocol has two types of participants: the arbiter and contributors. The arbiter
//! serves as an orchestrator that collects commitments, acks, complaints, and reveals from
//! contributors and replicates them to other contributors. The arbiter can be implemented as
//! a standalone process or by some consensus protocol. Contributors are the participants
//! that deal shares and commitments to other contributors in the protocol.
//!
//! Because the target use case for this protocol is a blockchain, the protocol is designed
//! to maintain a `2f + 1` threshold over `3f + 1` participants across any reshare (including reshares
//! with a changing contributor set) where `2f + 1` contributors are online and honest (although
//! the threshold can be arbitrarily configured). To achieve this, the protocol sacrifices
//! responsiveness and instead relies on "timeouts" that all online and honest contributors
//! are expected to communicate within. To provide a "feeling" of responsiveness, the protocol
//! can be implemented with block height-based timeouts over an optimistically responsive protocol.
//!
//! Whether or not the protocol succeeds in a given round (i.e. `2f + 1` participants are not
//! online and honest), all contributors that do not adhere to the protocol will be identified
//! and returned. If the protocol succeeds, the contributions of any contributors that did not
//! adhere to the protocol are excluded (and still returned). It is expected that the set of
//! contributors would punish/exclude "bad" contributors prior to a future round.
//!
//! ## Arbiter
//!
//! ### [Phase 0] Step 0: Collect Commitments
//!
//! In the first phase, the arbiter collects randomly generated commitments from all contributors.
//! If the arbiter is instantiated with a polynomial (from a previous DKG/Reshare), it will enforce all
//! generated commitments are consistent with said polynomial. The arbiter, lastly, enforces that the
//! degree of each commitment is `threshold - 1`.
//!
//! Any contributors that do not submit a commitment before the timeout or submit an invalid commitment
//! are disqualified.
//!
//! If there are not at least `threshold` valid commitments (or `previous.degree + 1` commitments in
//! resharing), the arbiter will abort the protocol.
//!
//! ### [Phase 0] Step 1: Distribute Valid Commitments
//!
//! After the Phase 0 timeout, the arbiter sends all valid commitments to all qualified contributors (this
//! can be implemented as a read operation on a blockchain and does not actually need to be a network message).
//!
//! ### [Phase 1] Step 2: Collect Acks and Complaints
//!
//! After distributing valid commitments, the arbiter will listen for acks and complaints from qualified
//! contributors. An "ack" is a message indicating that a given contributor has received a valid
//! share from a dealer (does not include encrypted or plaintext share material). A "complaint" is a
//! signed share from a given dealer that is invalid (signing is external to this implementation).
//! If the complaint is valid, the dealer that sent it is disqualified. If the complaint is invalid
//! (it is a valid share), the recipient is disqualified. Because all shares must be signed by the contributor
//! that generates them and this signature is over the plaintext share, there is no need to have a
//! "justification" phase where said contributor must "defend" itself.
//!
//! Any commitments without at least `threshold - 1` acks (dealers don't need to ack their own
//! commitment) are disqualified. Contributors that are missing more than (threshold - 1)/2 shares
//! (on commitments with at least `threshold - 1` acks) are disqualified (revealing this many shares
//! could allow an adversary to reconstruct the secret).
//!
//! If there are not at least `threshold` valid commitments (or `previous.degree + 1` commitments in
//! resharing), the arbiter will abort the protocol.
//!
//! ### [Phase 1] Step 3 (Optional): Request Reveals
//!
//! After the Phase 1 timeout, the arbiter will send a request to contributors of any commitments with
//! at least `threshold - 1` acks for qualified contributors that have not yet sent an ack for
//! said commitment.
//!
//! If there are no such requests, the arbiter will proceed directly to step 5 (without waiting for
//! a timeout).
//!
//! If there are such requests, the arbiter will proceed to step 4.
//!
//! ### [Phase 2] Step 4 (Optional): Collect Reveals
//!
//! Collect reveals that match any requests from Step 3. If a valid reveal for a commitment
//! is not sent before the timeout or the reveal is invalid, the arbiter will disqualify the commitment.
//!
//! ### [Phase 2] Step 5: Finalize Commitments and Distribute Reveals
//!
//! After Step 2 (or 4), the arbiter will forward all commitments with at least `threshold - 1` acks to
//! all qualified contributors (and any accompanying reveals). The arbtier will then recover the
//! new group polynomial using all valid commitments, if a DKG, or the first `threshold` commitments
//! (sorted by participant identity), if a reshare.
//!
//! ## Contributor
//!
//! ### [Phase 0] Step 0 (Optional): Generate Shares and Commitment
//!
//! If a contributor is joining a pre-existing group (and is not a dealer), it proceeds to Step 2.
//!
//! Otherwise, it generates shares and a commitment. If it is a DKG, the commitment is a random polynomial
//! with degree of `threshold - 1`. If it is a reshare, the commitment must be consistent with the previous
//! group polynomial. The contributor generates the shares and commitment for Step 1 and sends the commitment
//! to the arbiter.
//!
//! ### [Phase 0] Step 1 (Optional): Distribute Shares
//!
//! After receiving qualified commitments from the arbiter, the contributor (if qualified) will distribute
//! shares to all other contributors (ordered by participant identity).
//!
//! ### [Phase 1] Step 2: Submit Acks/Complaints
//!
//! After receiving a share from a qualified contributor, the contributor will send an "ack" to the
//! arbiter if the share is valid (confirmed against commitment) or a "complaint" if the share is invalid.
//!
//! The contributor will not send an "ack" for its own share (if it is a qualified contributor).
//!
//! ### [Phase 2] Step 3 (Optional): Respond to Reveal Requests
//!
//! If a contributor receives a "request" from the arbiter to reveal a share, it will do so. Even
//! if it knows it sent said share to said contributor, it is possible that this contributor is malicious
//! and chose not to "ack" it (this should not be a penalty for the contributor that must reveal).
//!
//! ### [Phase 2] Step 4 (Optional): Collect Reveals, Recover Group Polynomial, and Derive Share
//!
//! If the round is successful, the arbiter will forward the valid commitments and any reveals required
//! to construct shares for the new group polynomial (which shares the same constant term if it is a
//! reshare). Like above, the contributor will recover the group polynomial. Unlike above, the
//! contributor will also recover its new share of the secret (rather than just adding all shares together).
//!
//! # Example
//!
//! For a complete example of how to instantiate this crate, checkout [commonware-vrf](https://docs.rs/commonware-vrf).
pub mod arbiter;
pub mod contributor;
pub mod ops;
pub mod utils;
use thiserror::Error;
#[derive(Error, Debug)]
pub enum Error {
#[error("unexpected polynomial")]
UnexpectedPolynomial,
#[error("commitment has wrong degree")]
CommitmentWrongDegree,
#[error("misdirected share")]
MisdirectedShare,
#[error("share does not on commitment")]
ShareWrongCommitment,
#[error("insufficient dealings")]
InsufficientDealings,
#[error("reshare mismatch")]
ReshareMismatch,
#[error("share interpolation failed")]
ShareInterpolationFailed,
#[error("public key interpolation failed")]
PublicKeyInterpolationFailed,
#[error("dealer is invalid")]
DealerInvalid,
#[error("missing share")]
MissingShare,
#[error("commitment disqualified")]
CommitmentDisqualified,
#[error("contributor disqualified")]
ContributorDisqualified,
#[error("contributor is invalid")]
ContirbutorInvalid,
#[error("complaint is invalid")]
ComplaintInvalid,
#[error("unexpected reveal")]
UnexpectedReveal,
#[error("missing commitment")]
MissingCommitment,
#[error("self-ack")]
SelfAck,
#[error("self-complaint")]
SelfComplaint,
#[error("duplicate commitment")]
DuplicateCommitment,
#[error("duplicate ack")]
DuplicateAck,
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bls12381::dkg::{arbiter, contributor};
use crate::bls12381::primitives::group::Private;
use crate::{Ed25519, Scheme};
use std::collections::HashMap;
fn run_dkg_and_reshare(
n_0: u32,
t_0: u32,
dealers_0: u32,
n_1: u32,
t_1: u32,
dealers_1: u32,
concurrency: usize,
) {
// Create contributors (must be in sorted order)
let mut contributors = Vec::new();
for i in 0..n_0 {
let signer = Ed25519::from_seed(i as u64).public_key();
contributors.push(signer);
}
contributors.sort();
// Create shares
let mut contributor_shares = HashMap::new();
let mut contributor_cons = HashMap::new();
for con in &contributors {
let me = con.clone();
let p0 = contributor::P0::new(
me,
t_0,
None,
contributors.clone(),
contributors.clone(),
concurrency,
);
let (p1, public, shares) = p0.finalize();
contributor_shares.insert(con.clone(), (public, shares));
contributor_cons.insert(con.clone(), p1.unwrap());
}
// Inform arbiter of commitments
let mut arb = arbiter::P0::new(
t_0,
None,
contributors.clone(),
contributors.clone(),
concurrency,
);
for contributor in contributors.iter().take(dealers_0 as usize) {
let (public, _) = contributor_shares.get(contributor).unwrap();
arb.commitment(contributor.clone(), public.clone()).unwrap();
}
let (result, disqualified) = arb.finalize();
// Verify disqualifications
assert_eq!(disqualified.len(), (n_0 - dealers_0) as usize);
for contributor in contributors.iter().skip(dealers_0 as usize) {
assert!(disqualified.contains(contributor));
}
let mut arb = result.unwrap();
// Send select commitments to contributors
for (_, dealer, commitment) in arb.commitments().iter() {
for contributor in contributors.iter() {
contributor_cons
.get_mut(contributor)
.unwrap()
.commitment(dealer.clone(), commitment.clone())
.unwrap();
}
}
// Finalze contributor P1
let mut p2 = HashMap::new();
for contributor in contributors.iter() {
let output = contributor_cons
.remove(contributor)
.unwrap()
.finalize()
.unwrap();
p2.insert(contributor.clone(), output);
}
let mut contributor_cons = p2;
// Distribute shares to contributors and send acks to arbiter
for (dealer, dealer_key, _) in arb.commitments().iter() {
for (idx, recipient) in contributors.iter().enumerate() {
let (_, shares) = contributor_shares.get(dealer_key).unwrap().clone();
let share = shares[idx];
contributor_cons
.get_mut(recipient)
.unwrap()
.share(dealer_key.clone(), share)
.unwrap();
// Skip ack for self
if dealer_key == recipient {
continue;
}
// Ensure ack fails if not commitment
let result = arb.ack(recipient.clone(), *dealer);
if idx < dealers_0 as usize {
result.unwrap();
} else {
// Should fail if never sent a commitment
result.unwrap_err();
}
}
}
// Finalize arb P1
let (result, disqualified) = arb.finalize();
// Verify disqualifications (unchanged)
assert_eq!(disqualified.len(), (n_0 - dealers_0) as usize);
for contributor in contributors.iter().skip(dealers_0 as usize) {
assert!(disqualified.contains(contributor));
}
let (arb, requests) = result.unwrap();
// Verify no missing shares
//
// If shares were missing, we'd need to ask for them!
assert!(requests.is_empty());
// Recover public key on arbiter
let (result, disqualified) = arb.finalize();
assert!(disqualified.len() == (n_0 - dealers_0) as usize);
for contributor in contributors.iter().skip(dealers_0 as usize) {
assert!(disqualified.contains(contributor));
}
let output = result.unwrap();
// Distribute final commitments to contributors and recover public key
let mut results = HashMap::new();
for contributor in contributors.iter() {
let result = contributor_cons
.remove(contributor)
.unwrap()
.finalize(output.commitments.clone())
.unwrap();
assert_eq!(result.public, output.public);
results.insert(contributor.clone(), result);
}
// Create reshare dealers
let reshare_dealers = contributors.clone();
// Create reshare recipients (assume no overlap)
let mut reshare_recipients = Vec::new();
for i in 0..n_1 {
let recipient = Ed25519::from_seed((i + n_0) as u64).public_key();
reshare_recipients.push(recipient);
}
reshare_recipients.sort();
let mut reshare_contributor_shares = HashMap::new();
for contributor in contributors.iter() {
let output = results.get(contributor).unwrap();
let p0 = contributor::P0::new(
contributor.clone(),
t_1,
Some((output.public.clone(), output.share)),
reshare_dealers.clone(),
reshare_recipients.clone(),
concurrency,
);
let (p1, public, shares) = p0.finalize();
assert!(p1.is_none());
reshare_contributor_shares.insert(contributor.clone(), (public, shares));
}
let mut reshare_contributor_cons = HashMap::new();
for con in &reshare_recipients {
let p1 = contributor::P1::new(
con.clone(),
t_1,
Some(output.public.clone()),
reshare_dealers.clone(),
reshare_recipients.clone(),
concurrency,
);
reshare_contributor_cons.insert(con.clone(), p1);
}
// Inform arbiter of commitments
let mut arb = arbiter::P0::new(
t_1,
Some(output.public.clone()),
reshare_dealers.clone(),
reshare_recipients.clone(),
concurrency,
);
for con in reshare_dealers.iter().take(dealers_1 as usize) {
let (public, _) = reshare_contributor_shares.get(con).unwrap();
arb.commitment(con.clone(), public.clone()).unwrap();
}
let (result, disqualified) = arb.finalize();
// Verify disqualifications
assert_eq!(disqualified.len(), (n_0 - dealers_1) as usize);
for contributor in reshare_dealers.iter().skip(dealers_1 as usize) {
assert!(disqualified.contains(contributor));
}
let mut arb = result.unwrap();
// Send select commitments to recipients
for (_, dealer, commitment) in arb.commitments().iter() {
for contributor in reshare_recipients.iter() {
reshare_contributor_cons
.get_mut(contributor)
.unwrap()
.commitment(dealer.clone(), commitment.clone())
.unwrap();
}
}
// Finalize contributor P0
let mut p2 = HashMap::new();
for contributor in reshare_recipients.iter() {
let output = reshare_contributor_cons
.remove(contributor)
.unwrap()
.finalize()
.unwrap();
p2.insert(contributor.clone(), output);
}
let mut reshare_contributor_cons = p2;
// Distribute shares to contributors and send acks to arbiter
for (dealer, dealer_key, _) in arb.commitments().iter() {
for (idx, recipient) in reshare_recipients.iter().enumerate() {
let (_, shares) = reshare_contributor_shares.get(dealer_key).unwrap().clone();
reshare_contributor_cons
.get_mut(recipient)
.unwrap()
.share(dealer_key.clone(), shares[idx])
.unwrap();
// Skip ack for self
if dealer_key == recipient {
continue;
}
arb.ack(recipient.clone(), *dealer).unwrap();
}
}
// Finalize arb p1
let (result, disqualified) = arb.finalize();
// Verify disqualifications (unchanged)
assert_eq!(disqualified.len(), (n_0 - dealers_1) as usize);
for contributor in reshare_dealers.iter().skip(dealers_1 as usize) {
assert!(disqualified.contains(contributor));
}
let (arb, requests) = result.unwrap();
// Verify no missing shares
//
// If shares were missing, we'd need to ask for them!
assert!(requests.is_empty());
// Recover public key on arbiter
let (result, disqualified) = arb.finalize();
assert!(disqualified.len() == (n_0 - dealers_1) as usize);
for contributor in reshare_dealers.iter().skip(dealers_1 as usize) {
assert!(disqualified.contains(contributor));
}
let output = result.unwrap();
// Distribute final commitments to contributors and recover public key
for contributor in reshare_recipients.iter() {
let result = reshare_contributor_cons
.remove(contributor)
.unwrap()
.finalize(output.commitments.clone())
.unwrap();
assert_eq!(result.public, output.public);
}
}
#[test]
fn test_dkg_and_reshare_all_active() {
run_dkg_and_reshare(5, 3, 5, 10, 7, 5, 4);
}
#[test]
fn test_dkg_and_reshare_min_active() {
run_dkg_and_reshare(5, 3, 3, 10, 7, 3, 4);
}
#[test]
fn test_dkg_and_reshare_min_active_large() {
run_dkg_and_reshare(20, 13, 13, 100, 67, 13, 4);
}
#[test]
#[should_panic]
fn test_dkg_and_reshare_insufficient_active() {
run_dkg_and_reshare(5, 3, 3, 10, 7, 2, 4);
}
fn run_dkg_reveal(defiant: bool) {
let (n, t) = (5, 4);
// Create contributors (must be in sorted order)
let mut contributors = Vec::new();
for i in 0..n {
let signer = Ed25519::from_seed(i as u64).public_key();
contributors.push(signer);
}
contributors.sort();
// Create shares
let mut contributor_shares = HashMap::new();
let mut contributor_cons = HashMap::new();
for con in &contributors {
let p0 = contributor::P0::new(
con.clone(),
t,
None,
contributors.clone(),
contributors.clone(),
1,
);
let (p1, public, shares) = p0.finalize();
contributor_shares.insert(con.clone(), (public, shares));
contributor_cons.insert(con.clone(), p1.unwrap());
}
// Inform arbiter of commitments
let mut arb = arbiter::P0::new(t, None, contributors.clone(), contributors.clone(), 1);
for contributor in contributors.iter() {
let (public, _) = contributor_shares.get(contributor).unwrap();
arb.commitment(contributor.clone(), public.clone()).unwrap();
}
let (result, disqualified) = arb.finalize();
// Verify disqualifications
assert!(disqualified.is_empty());
let mut arb = result.unwrap();
// Send select commitments to contributors
for (_, dealer, commitment) in arb.commitments().iter() {
for contributor in contributors.iter() {
contributor_cons
.get_mut(contributor)
.unwrap()
.commitment(dealer.clone(), commitment.clone())
.unwrap();
}
}
// Finalze contributor P1
let mut p2 = HashMap::new();
for contributor in contributors.iter() {
let output = contributor_cons
.remove(contributor)
.unwrap()
.finalize()
.unwrap();
p2.insert(contributor.clone(), output);
}
let mut contributor_cons = p2;
// Distribute shares to contributors and send acks to arbiter
for (dealer, dealer_key, _) in arb.commitments().iter() {
for (idx, recipient) in contributors.iter().enumerate() {
let (_, shares) = contributor_shares.get(dealer_key).unwrap().clone();
contributor_cons
.get_mut(recipient)
.unwrap()
.share(dealer_key.clone(), shares[idx])
.unwrap();
// Purposely skip ack
if *dealer == 0 && idx == 1 {
continue;
}
// Skip ack for self
if dealer_key == recipient {
continue;
}
arb.ack(recipient.clone(), *dealer).unwrap();
}
}
// Finalize arb P1
let (result, disqualified) = arb.finalize();
// Verify disqualifications (unchanged)
assert!(disqualified.is_empty());
let (mut arb, requests) = result.unwrap();
// Verify 1 missing share
//
// If shares were missing, we'd need to ask for them!
assert_eq!(requests, vec![(0, 1)]);
// Reval missing share
if !defiant {
let dealer = contributors[0].clone();
let share = contributor_shares.get(&dealer).unwrap().1[1];
arb.reveal(dealer.clone(), share).unwrap();
// Recover public key on arbiter
let (result, disqualified) = arb.finalize();
assert!(disqualified.is_empty());
let output = result.unwrap();
// Distribute final commitments to contributors and recover public key
for (idx, contributor) in contributors.iter().enumerate() {
let mut contributor = contributor_cons.remove(contributor).unwrap();
if idx == 1 {
contributor.share(dealer.clone(), share).unwrap();
}
let result = contributor.finalize(output.commitments.clone()).unwrap();
assert_eq!(result.public, output.public);
}
return;
}
// Recover public key on arbiter
let (result, disqualified) = arb.finalize();
// Ensure dealer that did not reveal is disqualified
assert!(disqualified.len() == 1);
disqualified.get(&contributors[0]).unwrap();
// Distribute final commitments to contributors and recover public key
let output = result.unwrap();
for contributor in contributors.iter() {
let result = contributor_cons
.remove(contributor)
.unwrap()
.finalize(output.commitments.clone())
.unwrap();
assert_eq!(result.public, output.public);
}
}
#[test]
fn test_dkg_reveal() {
run_dkg_reveal(false);
}
#[test]
fn test_dkg_reveal_defiant() {
run_dkg_reveal(true);
}
#[test]
fn test_dkg_complaint() {
let (n, t) = (5, 4);
// Create contributors (must be in sorted order)
let mut contributors = Vec::new();
for i in 0..n {
let signer = Ed25519::from_seed(i as u64).public_key();
contributors.push(signer);
}
contributors.sort();
// Create shares
let mut contributor_shares = HashMap::new();
let mut contributor_cons = HashMap::new();
for con in &contributors {
// Generate private key
let p0 = contributor::P0::new(
con.clone(),
t,
None,
contributors.clone(),
contributors.clone(),
1,
);
let (p1, public, mut shares) = p0.finalize();
// Corrupt shares
for share in shares.iter_mut() {
share.private = Private::rand(&mut rand::thread_rng());
}
// Record shares
contributor_shares.insert(con.clone(), (public, shares));
contributor_cons.insert(con.clone(), p1.unwrap());
}
// Inform arbiter of commitments
let mut arb = arbiter::P0::new(t, None, contributors.clone(), contributors.clone(), 1);
for contributor in contributors.iter() {
let (public, _) = contributor_shares.get(contributor).unwrap();
arb.commitment(contributor.clone(), public.clone()).unwrap();
}
let (result, disqualified) = arb.finalize();
// Verify disqualifications
assert!(disqualified.is_empty());
let mut arb = result.unwrap();
// Send select commitments to contributors
for (_, dealer, commitment) in arb.commitments().iter() {
for contributor in contributors.iter() {
contributor_cons
.get_mut(contributor)
.unwrap()
.commitment(dealer.clone(), commitment.clone())
.unwrap();
}
}
// Finalze contributor P0
let mut p1 = HashMap::new();
for contributor in contributors.iter() {
let output = contributor_cons
.remove(contributor)
.unwrap()
.finalize()
.unwrap();
p1.insert(contributor.clone(), output);
}
let mut contributor_cons = p1;
// Distribute shares to contributors and send complaints to arbiter
for (dealer, dealer_key, _) in arb.commitments().iter() {
for (idx, recipient) in contributors.iter().enumerate() {
let (_, shares) = contributor_shares.get(dealer_key).unwrap().clone();
let share = shares[idx];
match contributor_cons
.get_mut(recipient)
.unwrap()
.share(dealer_key.clone(), share)
{
Err(Error::ShareWrongCommitment) => {}
_ => {
panic!("expected share to be invalid");
}
}
let _ = arb.complaint(recipient.clone(), *dealer, &share);
}
}
// Verify failure
let (result, disqualified) = arb.finalize();
assert!(result.is_none());
assert!(disqualified.len() == n as usize);
}
}