commonware_cryptography/bls12381/dkg/
contributor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//! Participants in a DKG/Resharing procedure that hold a share of the secret.
//!
//! # Tracking Invalidity
//!
//! Unlike the arbiter, the contributor does not track invalidity and requires
//! the arbiter to notify it of such things. This prevents the case where
//! a malicious contributor disqualifies itself on one contributor before
//! said contributors can inform the arbiter of the issue. This could prevent
//! an honest contributor from recognizing a commitment as valid (that all other
//! contributors have agreed upon).
//!
//! # Warning
//!
//! It is up to the developer to authorize interaction with the contributor. This is purposely
//! not provided by the contributor because this authorization function is highly dependent on
//! the context in which the contributor is being used.

use crate::bls12381::{
    dkg::{ops, Error},
    primitives::{
        group::{self, Element, Share},
        poly::{self, Eval},
    },
};
use crate::PublicKey;
use std::collections::{BTreeMap, HashMap, HashSet};

/// Output of a DKG/Resharing procedure.
#[derive(Clone)]
pub struct Output {
    pub public: poly::Public,
    pub commitments: Vec<poly::Public>,
    pub share: Share,
}

/// Generate shares and a commitment (optional).
pub struct P0 {
    me: PublicKey,
    threshold: u32,
    previous: Option<(poly::Public, Share)>,
    concurrency: usize,

    dealers_ordered: HashMap<PublicKey, u32>,
    recipients: Vec<PublicKey>,
    recipients_ordered: HashMap<PublicKey, u32>,
}

impl P0 {
    /// Create a new dealer for a DKG/Resharing procedure (optional).
    ///
    /// If `me` is not in `dealers`, this will panic.
    pub fn new(
        me: PublicKey,
        threshold: u32,
        previous: Option<(poly::Public, Share)>,
        mut dealers: Vec<PublicKey>,
        mut recipients: Vec<PublicKey>,
        concurrency: usize,
    ) -> Self {
        dealers.sort();
        let dealers_ordered = dealers
            .iter()
            .enumerate()
            .map(|(i, pk)| (pk.clone(), i as u32))
            .collect::<HashMap<_, _>>();
        if !dealers_ordered.contains_key(&me) {
            panic!("me must be in dealers");
        }
        recipients.sort();
        let recipients_ordered = recipients
            .iter()
            .enumerate()
            .map(|(i, pk)| (pk.clone(), i as u32))
            .collect();
        Self {
            me,
            threshold,
            previous,
            concurrency,
            dealers_ordered,
            recipients,
            recipients_ordered,
        }
    }

    /// Construct commitment, shares, and optionally `P1` (if the dealer
    /// is also a recipient).
    pub fn finalize(self) -> (Option<P1>, poly::Public, Vec<Share>) {
        // Generate shares and commitment
        let (public, share) = match self.previous {
            Some((public, share)) => (Some(public), Some(share)),
            None => (None, None),
        };
        let (commitment, shares) =
            ops::generate_shares(share, self.recipients.len() as u32, self.threshold);

        // Proceed to next phase
        let p1 = if self.recipients_ordered.contains_key(&self.me) {
            // We manually construct P1 to avoid resorting the dealers/recipients
            Some(P1 {
                me: self.me,
                threshold: self.threshold,
                previous: public,
                concurrency: self.concurrency,
                dealers_ordered: self.dealers_ordered,
                recipients_ordered: self.recipients_ordered,
                commitments: HashMap::new(),
                valid: BTreeMap::new(),
            })
        } else {
            None
        };
        (p1, commitment, shares)
    }
}

/// Track commitments distributed by dealers.
pub struct P1 {
    me: PublicKey,
    threshold: u32,
    previous: Option<poly::Public>,
    concurrency: usize,

    dealers_ordered: HashMap<PublicKey, u32>,
    recipients_ordered: HashMap<PublicKey, u32>,

    commitments: HashMap<PublicKey, poly::Public>,

    valid: BTreeMap<u32, (poly::Public, Share)>,
}

impl P1 {
    /// Create a new contributor for a DKG/Resharing procedure.
    pub fn new(
        me: PublicKey,
        threshold: u32,
        previous: Option<poly::Public>,
        mut dealers: Vec<PublicKey>,
        mut recipients: Vec<PublicKey>,
        concurrency: usize,
    ) -> Self {
        dealers.sort();
        let dealers_ordered = dealers
            .iter()
            .enumerate()
            .map(|(i, pk)| (pk.clone(), i as u32))
            .collect();
        recipients.sort();
        let recipients_ordered = recipients
            .iter()
            .enumerate()
            .map(|(i, pk)| (pk.clone(), i as u32))
            .collect();
        Self {
            me,
            threshold,
            previous,
            concurrency,
            dealers_ordered,
            recipients_ordered,
            commitments: HashMap::new(),
            valid: BTreeMap::new(),
        }
    }

    /// Required number of commitments to continue procedure.
    pub fn required(&self) -> u32 {
        match &self.previous {
            Some(previous) => previous.required(),
            None => self.threshold,
        }
    }

    /// Verify and track a commitment from a dealer.
    pub fn commitment(&mut self, dealer: PublicKey, commitment: poly::Public) -> Result<(), Error> {
        // Ensure contributor is valid
        let idx = match self.dealers_ordered.get(&dealer) {
            Some(contributor) => *contributor,
            None => return Err(Error::DealerInvalid),
        };

        // Verify that commitment is valid
        ops::verify_commitment(self.previous.as_ref(), idx, &commitment, self.threshold)?;

        // Store commitment
        self.commitments.insert(dealer, commitment);
        Ok(())
    }

    /// Return whether a commitment has been received from a dealer.
    pub fn has(&self, dealer: PublicKey) -> bool {
        self.commitments.contains_key(&dealer)
    }

    /// Return the count of tracked commitments.
    pub fn count(&self) -> usize {
        self.commitments.len()
    }

    /// If there exist at least `required()` commitments, proceed to `P2`.
    pub fn finalize(self) -> Option<P2> {
        // Ensure there are enough commitments to proceed
        if self.commitments.len() < self.required() as usize {
            return None;
        }

        // Proceed to next phase
        Some(P2 {
            me: self.me,
            threshold: self.threshold,
            previous: self.previous,
            concurrency: self.concurrency,
            dealers_ordered: self.dealers_ordered,
            recipients_ordered: self.recipients_ordered,
            commitments: self.commitments,
            valid: self.valid,
        })
    }
}

/// Track shares distributed by dealers.
pub struct P2 {
    me: PublicKey,
    threshold: u32,
    previous: Option<poly::Public>,
    concurrency: usize,

    dealers_ordered: HashMap<PublicKey, u32>,
    recipients_ordered: HashMap<PublicKey, u32>,

    commitments: HashMap<PublicKey, poly::Public>,

    valid: BTreeMap<u32, (poly::Public, Share)>,
}

impl P2 {
    /// Required number of commitments to continue procedure.
    pub fn required(&self) -> u32 {
        match &self.previous {
            Some(previous) => previous.required(),
            None => self.threshold,
        }
    }

    /// Verify and track a share from a dealer.
    pub fn share(&mut self, dealer: PublicKey, share: Share) -> Result<(), Error> {
        // Ensure contributor is valid
        let idx = match self.dealers_ordered.get(&dealer) {
            Some(contributor) => *contributor,
            None => return Err(Error::DealerInvalid),
        };

        // Ensure share is for us
        if share.index != self.recipients_ordered[&self.me] {
            return Err(Error::MisdirectedShare);
        }

        // Verify that share is valid
        let commitment = match self.commitments.get(&dealer) {
            Some(commitment) => commitment.clone(),
            None => return Err(Error::MissingCommitment),
        };
        ops::verify_share(
            self.previous.as_ref(),
            idx,
            &commitment,
            self.threshold,
            share.index,
            &share,
        )?;

        // Store share for later use
        //
        // If we receive multiple shares from the same dealer, we will
        // only keep the last.
        self.valid.insert(idx, (commitment, share));
        Ok(())
    }

    /// If we are tracking shares for all provided `commitments`, recover
    /// the new group public polynomial and our share.
    pub fn finalize(mut self, commitments: Vec<u32>) -> Result<Output, Error> {
        // Ensure we have all required shares
        for dealer in &commitments {
            if !self.valid.contains_key(dealer) {
                return Err(Error::MissingShare);
            }
        }

        // Remove all valid not in commitments
        let commitments: HashSet<_> = commitments.into_iter().collect();
        for dealer in self.valid.keys().cloned().collect::<Vec<_>>() {
            if !commitments.contains(&dealer) {
                self.valid.remove(&dealer);
            }
        }

        // Ensure we have enough shares to construct a secret
        let required = self.required();
        let shares = self.valid.len();
        if shares < required as usize {
            return Err(Error::InsufficientDealings);
        }

        // Construct secret
        let mut public = poly::Public::zero();
        let mut t_commitments = Vec::new();
        let mut secret = group::Private::zero();
        match self.previous {
            None => {
                // Add all valid commitments/shares
                for share in self.valid.values() {
                    public.add(&share.0);
                    t_commitments.push(share.0.clone());
                    secret.add(&share.1.private);
                }
            }
            Some(previous) => {
                // Recover public via interpolation
                //
                // While it is tempting to remove this work (given we only need the secret
                // to generate a threshold signature), this polynomial is required to verify
                // dealings of future resharings.
                let commitments: BTreeMap<u32, poly::Public> = self
                    .valid
                    .iter()
                    .take(required as usize)
                    .map(|(dealer, (commitment, _))| (*dealer, commitment.clone()))
                    .collect();
                t_commitments = commitments.values().cloned().collect();
                public =
                    ops::recover_public(&previous, commitments, self.threshold, self.concurrency)?;

                // Recover share via interpolation
                let shares = self
                    .valid
                    .into_iter()
                    .take(required as usize)
                    .map(|(dealer, (_, share))| Eval {
                        index: dealer,
                        value: share.private,
                    })
                    .collect::<Vec<_>>();
                secret = match poly::Private::recover(required, shares) {
                    Ok(share) => share,
                    Err(_) => return Err(Error::ShareInterpolationFailed),
                };
            }
        }

        // Return the public polynomial and share
        Ok(Output {
            public,
            commitments: t_commitments,
            share: Share {
                index: self.recipients_ordered[&self.me],
                private: secret,
            },
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Ed25519, Scheme};
    use std::collections::HashMap;

    fn create_and_verify_shares(n: u32, t: u32, dealers: u32, concurrency: usize) {
        // Create contributors
        let mut contributors = (0..n)
            .map(|i| Ed25519::from_seed(i as u64).public_key())
            .collect::<Vec<_>>();
        contributors.sort();

        // Create shares
        let mut contributor_shares = HashMap::new();
        let mut commitments = Vec::new();
        for i in 0..n {
            let me = contributors[i as usize].clone();
            let contributor = P0::new(
                me,
                t,
                None,
                contributors.clone(),
                contributors.clone(),
                concurrency,
            );
            let (contributor, public, shares) = contributor.finalize();
            contributor_shares.insert(i, (public.clone(), shares, contributor.unwrap()));
            commitments.push(public);
        }

        // Distribute commitments
        for i in 0..dealers {
            let dealer = contributors[i as usize].clone();
            for j in 0..n {
                // Get recipient share
                let (commitment, _, _) = contributor_shares.get(&i).unwrap();
                let commitment = commitment.clone();

                // Send share to recipient
                let (_, _, ref mut recipient) = contributor_shares.get_mut(&j).unwrap();
                recipient.commitment(dealer.clone(), commitment).unwrap();
            }
        }

        // Convert to p2
        let mut p2 = HashMap::new();
        for i in 0..n {
            let (_, shares, contributor) = contributor_shares.remove(&i).unwrap();
            let contributor = contributor.finalize().unwrap();
            p2.insert(i, (shares, contributor));
        }
        let mut contributor_shares = p2;

        // Distribute shares
        for i in 0..dealers {
            let dealer = contributors[i as usize].clone();
            for j in 0..n {
                // Get recipient share
                let (shares, _) = contributor_shares.get(&i).unwrap();
                let share = shares[j as usize];

                // Send share to recipient
                let (_, recipient) = contributor_shares.get_mut(&j).unwrap();
                recipient.share(dealer.clone(), share).unwrap();
            }
        }

        // Finalize
        let included_commitments = (0..dealers).collect::<Vec<_>>();
        let commitments = commitments[0..dealers as usize].to_vec();
        let mut group: Option<poly::Public> = None;
        for i in 0..n {
            let (_, contributor) = contributor_shares.remove(&i).unwrap();
            let output = contributor
                .finalize(included_commitments.clone())
                .expect("unable to finalize");
            assert_eq!(output.commitments, commitments);
            match &group {
                Some(group) => {
                    assert_eq!(output.public, *group);
                }
                None => {
                    group = Some(output.public);
                }
            }
        }
    }

    #[test]
    fn test_simple_dkg() {
        create_and_verify_shares(5, 3, 5, 4);
    }

    #[test]
    fn test_large_dkg() {
        create_and_verify_shares(100, 67, 80, 4);
    }
}