1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use std::collections::VecDeque;
use std::sync::{Arc, Condvar, Mutex};
use std::time::{Duration, SystemTime};

struct QueueFlags<S> where S: Send + Sync + Clone {
    empty: bool,
    full: bool,
    signal: Option<S>,
}

impl<S> QueueFlags<S> where S: Send + Sync + Clone {
    fn new() -> QueueFlags<S> {
        QueueFlags {
            empty: true,
            full: false,
            signal: None,
        }
    }
}

/// Blocking bounded queue
///
/// `E: Send + Sync` - the element type
/// `S: Send + Sync + Clone` - the signal type. Signals can be used to provide out of band
/// communication between threads
/// This is a multiple producers / multiple consumers blocking bounded queue.
/// Reference: [Producer-Consumer](https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem)
pub struct BlockingQueue<E, S> where E: Send + Sync, S: Send + Sync + Clone {
    flags: Arc<Mutex<QueueFlags<S>>>,
    empty: Arc<Condvar>,
    full: Arc<Condvar>,
    elements: Arc<Mutex<VecDeque<E>>>,
    size: usize,
}

impl<E, S> BlockingQueue<E, S> where E: Send + Sync, S: Send + Sync + Clone {
    /// Create a new queue with `size` capacity
    /// ```
    /// use command_executor::blocking_queue::BlockingQueue;
    /// let q: BlockingQueue<i32, i32> = BlockingQueue::new(4);
    /// ```
    pub fn new(size: usize) -> BlockingQueue<E, S> {
        let flags = Arc::new(Mutex::new(QueueFlags::new()));
        BlockingQueue::<E, S> {
            flags,
            empty: Arc::new(Condvar::new()),
            full: Arc::new(Condvar::new()),
            elements: Arc::new(Mutex::new(VecDeque::with_capacity(size))),
            size,
        }
    }

    /// The current length of the queue
    /// ```
    /// use command_executor::blocking_queue::BlockingQueue;
    /// let q: BlockingQueue<i32, i32> = BlockingQueue::new(4);
    /// q.enqueue(11);
    /// assert_eq!(q.len(), 1);
    /// ```
    pub fn len(&self) -> usize {
        self.elements.lock().unwrap().len()
    }

    /// Wait until the queue is empty.
    ///
    /// Note that the empty state is temporary. This method is mostly useful when we know that no
    /// elements are to be enqueued and we what an indication of completion.
    pub fn wait_empty(&self, timeout: Duration) -> bool {
        let flags_lock = &*self.flags;
        let empty = &*self.empty;
        let mut flags = flags_lock.lock().unwrap();
        let mut t = timeout;
        let mut start = SystemTime::now();
        while !(*flags).empty {
            match empty.wait_timeout(flags, t).unwrap() {
                (f, timeout_result) => {
                    flags = f;
                    if timeout_result.timed_out() {
                        break;
                    } else {
                        let elapsed = start.elapsed().unwrap_or(Duration::from_nanos(1));
                        if elapsed < t {
                            t = t - elapsed;
                            start = SystemTime::now();
                        } else {
                            break;
                        }
                    }
                }
            }
        }

        (*flags).empty
    }

    /// Enqueue an element. When the queue is full will block until space available.
    pub fn enqueue(&self, element: E) {
        self.try_enqueue(element, Duration::MAX);
    }

    /// Enqueue an element with timeout. When timeout is exceeded return the element to caller.
    pub fn try_enqueue(&self, element: E, timeout: Duration) -> Option<E> {
        let flags_lock = &*self.flags;
        let empty = &*self.empty;
        let full = &*self.full;
        let mut flags = flags_lock.lock().unwrap();
        let mut timed_out = false;
        let mut t = timeout;
        let mut start = SystemTime::now();
        while (*flags).full {
            match full.wait_timeout(flags, t).unwrap() {
                (f, timeout_result) => {
                    flags = f;
                    if timeout_result.timed_out() {
                        timed_out = true;
                        break;
                    } else {
                        let elapsed = start.elapsed().unwrap_or(Duration::from_nanos(1));
                        if elapsed < t {
                            t = t - elapsed;
                            start = SystemTime::now();
                        } else {
                            timed_out = true;
                            break;
                        }
                    }
                }
            }
        }

        if timed_out {
            Some(element)
        } else {
            let mut elements = self.elements.lock().unwrap();
            elements.push_back(element);
            if elements.len() == self.size {
                (*flags).full = true;
                full.notify_all()
            } else {
                (*flags).empty = false;
                empty.notify_one();
            }
            None
        }
    }

    /// Dequeue an element or a signal from the queue. When the queue is empty will block until an element or
    /// a signal are available
    pub fn dequeue(&self) -> (Option<E>, Option<S>) {
        self.try_dequeue(Duration::MAX)
    }

    /// Dequeue and element or a signal from the queue with timeout.
    pub fn try_dequeue(&self, timeout: Duration) -> (Option<E>, Option<S>) {
        let flags_lock = &*self.flags;
        let empty = &*self.empty;
        let full = &*self.full;
        let mut flags = flags_lock.lock().unwrap();
        let mut timed_out = false;
        let mut t = timeout;
        let mut start = SystemTime::now();
        while (*flags).empty && flags.signal.is_none() {
            match empty.wait_timeout(flags, t).unwrap() {
                (f, timeout_result) => {
                    flags = f;
                    if timeout_result.timed_out() {
                        timed_out = true;
                        break;
                    } else {
                        let elapsed = start.elapsed().unwrap_or(Duration::from_nanos(1));
                        if elapsed < t {
                            t = t - elapsed;
                            start = SystemTime::now();
                        } else {
                            timed_out = true;
                            break;
                        }
                    }
                }
            }
        }

        if timed_out {
            (None, None)
        } else {
            let mut elements = self.elements.lock().unwrap();
            let element = elements.pop_front();

            if elements.len() == 0 {
                (*flags).empty = true;
                empty.notify_all();
            } else {
                (*flags).full = false;
                full.notify_one();
            }
            (element, flags.signal.clone())
        }
    }

    /// Deliver a signal to Queue consumers.
    ///
    /// Note that the signal is visible to all consumers until cleared
    pub fn signal(&self, signal: S) {
        let empty = &*self.empty;
        let mut flags = self.flags.lock().unwrap();
        (*flags).signal = Some(signal);
        empty.notify_all();
    }

    /// Clear the signal. Usually it is better if consumers ignore signals they already processed.
    pub fn clear_signal(&self) {
        let mut flags = self.flags.lock().unwrap();
        (*flags).signal = None;
    }
}

#[cfg(test)]
mod tests {
    use std::thread::Builder;

    use super::*;

    #[test]
    fn test_try_dequeue() {
        let q = BlockingQueue::<i32, ()>::new(128);

        let r = q.try_dequeue(Duration::from_millis(0));
        assert_eq!(r, (None, None));
        let r = q.try_dequeue(Duration::from_millis(10));
        assert_eq!(r, (None, None));
    }

    #[test]
    fn test_try_enqueue() {
        let q = BlockingQueue::<i32, ()>::new(128);
        for i in 0..128 {
            q.enqueue(i);
        }

        let r = q.try_enqueue(128, Duration::from_millis(0));
        assert_eq!(r, Some(128));
        let r = q.try_enqueue(128, Duration::from_millis(10));
        assert_eq!(r, Some(128));
    }

    #[test]
    fn test_fifo() {
        let q = BlockingQueue::<i32, ()>::new(128);
        for i in 0..128 {
            q.enqueue(i);
        }

        for i in 0..128 {
            assert_eq!(q.dequeue().0.unwrap(), i);
        }
    }

    #[test]
    fn test_mpsc() {
        let q = Arc::new(BlockingQueue::<(i32, i32), ()>::new(16));
        let qp1 = q.clone();
        let qp2 = q.clone();
        let qc1 = q.clone();

        let p1 = Builder::new()
            .spawn(
                move || {
                    for i in 0..2048 {
                        qp1.enqueue((1, i));
                    }
                }
            );

        let p2 = Builder::new()
            .spawn(
                move || {
                    for i in 0..2048 {
                        qp2.enqueue((2, i));
                    }
                }
            );

        let c1 = Builder::new()
            .spawn(
                move || {
                    let mut collector = Vec::<(i32, i32)>::new();
                    loop {
                        let (element, _signal) = qc1.dequeue();
                        collector.push(element.unwrap());
                        if collector.len() == 4096 {
                            break collector;
                        }
                    }
                }
            );
        p1.unwrap().join().expect("failed to join producer");
        p2.unwrap().join().expect("failed to join producer");

        let mut collector = c1.unwrap().join().expect("failed to join consumer");
        for i in 0..2048 {
            let i1 = collector.iter().position(|e| *e == (1, i)).unwrap();
            collector.remove(i1);
            let i2 = collector.iter().position(|e| *e == (2, i)).unwrap();
            collector.remove(i2);
        }
        assert!(collector.is_empty());
    }

    #[test]
    fn test_mpmc() {
        let q = Arc::new(BlockingQueue::<(i32, i32), ()>::new(16));
        let qp1 = q.clone();
        let qp2 = q.clone();
        let qc1 = q.clone();
        let qc2 = q.clone();

        let p1 = Builder::new()
            .spawn(
                move || {
                    for i in 0..2048 {
                        qp1.enqueue((1, i));
                    }
                }
            );

        let p2 = Builder::new()
            .spawn(
                move || {
                    for i in 0..2048 {
                        qp2.enqueue((2, i));
                    }
                }
            );

        let c1 = Builder::new()
            .spawn(
                move || {
                    let mut collector = Vec::<(i32, i32)>::new();
                    loop {
                        let (element, signal) = qc1.dequeue();
                        match element {
                            None => {}
                            Some(e) => {
                                collector.push(e);
                            }
                        }
                        match signal {
                            None => {}
                            Some(_) => {
                                break collector;
                            }
                        }
                    }
                }
            );

        let c2 = Builder::new()
            .spawn(
                move || {
                    let mut collector = Vec::<(i32, i32)>::new();
                    loop {
                        let (element, signal) = qc2.dequeue();
                        match element {
                            None => {}
                            Some(e) => {
                                collector.push(e);
                            }
                        }
                        match signal {
                            None => {}
                            Some(_) => {
                                break collector;
                            }
                        }
                    }
                }
            );
        p1.unwrap().join().expect("failed to join producer");
        p2.unwrap().join().expect("failed to join producer");
        q.signal(());

        let mut collector1 = c1.unwrap().join().expect("failed to join consumer");
        let mut collector2 = c2.unwrap().join().expect("failed to join consumer");

        let mut collector = Vec::<(i32, i32)>::new();
        collector.append(&mut collector1);
        collector.append(&mut collector2);

        for i in 0..2048 {
            let i1 = collector.iter().position(|e| *e == (1, i)).unwrap();
            collector.remove(i1);
            let i2 = collector.iter().position(|e| *e == (2, i)).unwrap();
            collector.remove(i2);
        }
        q.clear_signal();
        assert!(collector.is_empty());
    }
}