1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::*;

use std::sync::atomic::{AtomicU64, Ordering};

// Most code in this module comes from macroquad's rand module, with some additions/tweaks.

const DEFAULT_INC: u64 = 1442695040888963407;
const MULTIPLIER: u64 = 6364136223846793005;

static STATE: AtomicU64 = AtomicU64::new(0);

/// Seeds the pseudo-random number generator used by rand()
/// with the value seed.
pub fn srand(seed: u64) {
    STATE.store(0, Ordering::Relaxed);
    rand();
    let oldstate = STATE.load(Ordering::Relaxed);
    STATE.store(oldstate.wrapping_add(seed), Ordering::Relaxed);
    rand();
}

/// returns a pseudo-random number in the range of 0 to u32::MAX.
pub fn rand() -> u32 {
    let oldstate: u64 = STATE.load(Ordering::Relaxed);
    STATE.store(
        oldstate.wrapping_mul(MULTIPLIER).wrapping_add(DEFAULT_INC),
        Ordering::Relaxed,
    );
    let xorshifted: u32 = (((oldstate >> 18) ^ oldstate) >> 27) as u32;
    let rot: u32 = (oldstate >> 59) as u32;
    xorshifted.rotate_right(rot)
}

pub trait RandomRange {
    fn gen_range(low: Self, high: Self) -> Self;
}

impl RandomRange for u8 {
    fn gen_range(low: Self, high: Self) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as u8
    }
}

impl RandomRange for f32 {
    fn gen_range(low: Self, high: Self) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        low + (high - low) * r
    }
}
impl RandomRange for f64 {
    fn gen_range(low: Self, high: Self) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        low + (high - low) * r as f64
    }
}
impl RandomRange for i32 {
    fn gen_range(low: i32, high: i32) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as i32
    }
}
impl RandomRange for i64 {
    fn gen_range(low: Self, high: Self) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as i64
    }
}
impl RandomRange for u32 {
    fn gen_range(low: u32, high: u32) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as u32
    }
}
impl RandomRange for u64 {
    fn gen_range(low: u64, high: u64) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as u64
    }
}
impl RandomRange for i16 {
    fn gen_range(low: i16, high: i16) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as i16
    }
}

impl RandomRange for usize {
    fn gen_range(low: usize, high: usize) -> Self {
        let r = rand() as f32 / std::u32::MAX as f32;
        let r = low as f32 + (high as f32 - low as f32) * r;
        r as usize
    }
}

pub fn gen_range<T>(low: T, high: T) -> T
where T: RandomRange {
    T::gen_range(low, high)
}

pub struct VecChooseIter<'a, T> {
    source: &'a Vec<T>,
    indices: std::vec::IntoIter<usize>,
}

impl<'a, T> Iterator for VecChooseIter<'a, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        self.indices.next().map(|ix| &self.source[ix])
    }
}

pub trait ChooseRandom<T> {
    fn shuffle(&mut self);
    fn choose(&self) -> Option<&T>;
    fn choose_mut(&mut self) -> Option<&mut T>;
    fn choose_multiple(&self, _amount: usize) -> VecChooseIter<T>;
}

impl<T> ChooseRandom<T> for Vec<T> {
    fn shuffle(&mut self) {
        let mut fy = FisherYates::default();

        fy.shuffle(self);
    }

    fn choose(&self) -> Option<&T> {
        let ix = gen_range(0, self.len());
        self.get(ix)
    }

    fn choose_mut(&mut self) -> Option<&mut T> {
        let ix = gen_range(0, self.len());
        self.get_mut(ix)
    }

    fn choose_multiple(&self, amount: usize) -> VecChooseIter<T> {
        let mut indices =
            (0..self.len()).enumerate().map(|(i, _)| i).collect::<Vec<usize>>();

        indices.shuffle();
        indices.resize(amount, 0);

        VecChooseIter { source: self, indices: indices.into_iter() }
    }
}

/// Implementation of Fisher-Yates algorithm.
/// This is modified version of https://github.com/adambudziak/shuffle/blob/master/src/fy.rs
#[derive(Debug, Default)]
pub struct FisherYates {
    buffer: [u8; std::mem::size_of::<usize>()],
}

impl FisherYates {
    pub fn shuffle<T>(&mut self, data: &mut Vec<T>) {
        for i in 1..data.len() {
            let j = self.gen_range(i);
            data.swap(i, j);
        }
    }
}

impl FisherYates {
    fn gen_range(&mut self, top: usize) -> usize {
        const USIZE_BYTES: usize = std::mem::size_of::<usize>();
        let bit_width = USIZE_BYTES * 8 - top.leading_zeros() as usize;
        let byte_count = (bit_width - 1) / 8 + 1;
        loop {
            for i in 0..byte_count {
                self.buffer[i] = gen_range(0, 255);
            }
            let result = usize::from_le_bytes(self.buffer);
            let result = result & ((1 << bit_width) - 1);
            if result < top {
                break result;
            }
        }
    }
}

// pub fn random(min: f32, max: f32) -> f32 {
//     // rand::random::<f32>().abs() * (max - min) + min
//     gen_range(min, max)
// }

pub fn random_i32(min: i32, max: i32) -> i32 {
    // rand::thread_rng().gen_range(min..max)
    gen_range(min, max)
}

pub fn random_usize(min: usize, max: usize) -> usize {
    // rand::thread_rng().gen_range(min..max)
    gen_range(min, max)
}

pub fn flip_coin(p: f32) -> bool {
    toss_coin(p)
}

pub fn coin_toss(p: f32) -> bool {
    toss_coin(p)
}

pub fn toss_coin(p: f32) -> bool {
    gen_range(0.0, 1.0) < p
}

pub fn random_angle() -> f32 {
    gen_range(0.0, 2.0 * PI)
}

pub fn random_range(min: f32, max: f32) -> f32 {
    gen_range(min, max)
}

pub fn random_dir() -> Vec2 {
    let angle = gen_range(0.0, std::f32::consts::PI * 2.0);

    Vec2::new(angle.cos(), angle.sin())
}

pub fn random_vec(min: f32, max: f32) -> Vec2 {
    random_dir() * gen_range(min, max)
}

pub fn random_offset(radius: f32) -> Vec2 {
    random_dir() * gen_range(0.0, radius)
}

pub fn random_circle(radius: f32) -> Vec2 {
    random_offset(radius)
}

pub fn random_box(center: Vec2, size: Vec2) -> Vec2 {
    center +
        vec2(
            gen_range(-size.x, size.x) / 2.0,
            gen_range(-size.y, size.y) / 2.0,
        )
}

pub fn random_around(position: Vec2, min: f32, max: f32) -> Vec2 {
    position + random_vec(min, max)
}

pub fn random() -> f32 {
    gen_range(0.0, 1.0)
}