1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// =============================================================================
//! - Functions for the structure Matrix
//!
//! # Metadata
//! - Copyright: © 1998 - 2022 [`CroftSoft Inc`]
//! - Author: [`David Wallace Croft`]
//! - Rust version: 2022-09-29
//! - Rust since: 2022-09-04
//! - Java version: 1998-12-27
//!
//! # History
//! - Adapted from the Java class com.croftsoft.core.math.Matrix
//! - In the Java-based [`CroftSoft Core Library`]
//!
//! [`CroftSoft Core Library`]: https://www.croftsoft.com/library/code/
//! [`CroftSoft Inc`]: https://www.croftsoft.com/
//! [`David Wallace Croft`]: https://www.croftsoft.com/people/david/
// =============================================================================
#[cfg(test)]
mod test;
use super::structures::*;
// Default ---------------------------------------------------------------------
impl<const R: usize, const C: usize> Default for Matrix<R, C> {
// ---------------------------------------------------------------------------
/// Makes a new Matrix of all zero entries
// ---------------------------------------------------------------------------
fn default() -> Self {
Self {
rows: [[0.0; C]; R],
}
}
}
// Associated functions --------------------------------------------------------
impl<const R: usize, const C: usize> Matrix<R, C> {
// ---------------------------------------------------------------------------
/// Adds the arguments and return the sum as a new Matrix
// ---------------------------------------------------------------------------
pub fn add_matrix_with_matrix(
augend: &Self,
addend: &Self,
) -> Self {
let mut sum = Self::default();
for r in 0..R {
for c in 0..C {
sum.rows[r][c] = augend.rows[r][c] + addend.rows[r][c];
}
}
sum
}
// ---------------------------------------------------------------------------
/// Adds the arguments and then returns the sum as a new Matrix
// ---------------------------------------------------------------------------
pub fn add_matrix_with_scalar(
augend: &Self,
addend: f64,
) -> Self {
let mut sum = Self::new(addend);
for r in 0..R {
for c in 0..C {
sum.rows[r][c] += augend.rows[r][c];
}
}
sum
}
// ---------------------------------------------------------------------------
/// Divides corresponding entries and returns the quotient as a new Matrix
// ---------------------------------------------------------------------------
pub fn divide_matrix_by_matrix_entrywise(
dividend_matrix: &Self,
divisor_matrix: &Self,
) -> Self {
let mut quotient_matrix = Self::default();
for r in 0..R {
for c in 0..C {
quotient_matrix.rows[r][c] =
dividend_matrix.rows[r][c] / divisor_matrix.rows[r][c];
}
}
quotient_matrix
}
// ---------------------------------------------------------------------------
/// Divides each entry by the scalar and then returns a new Matrix
// ---------------------------------------------------------------------------
pub fn divide_matrix_by_scalar(
dividend: &Self,
divisor: f64,
) -> Self {
let mut quotient = Self::default();
for r in 0..R {
for c in 0..C {
quotient.rows[r][c] = dividend.rows[r][c] / divisor;
}
}
quotient
}
// ---------------------------------------------------------------------------
/// Multiplies the arguments and then returns the product as a new Matrix
// ---------------------------------------------------------------------------
pub fn multiply_matrix_with_matrix<const K: usize>(
multiplicand: &Self,
multiplier: &Matrix<C, K>,
) -> Matrix<R, K> {
let mut product = Matrix::<R, K>::default();
for r in 0..R {
for k in 0..K {
for i in 0..C {
product.rows[r][k] += multiplicand.rows[r][i] * multiplier.rows[i][k];
}
}
}
product
}
// ---------------------------------------------------------------------------
/// Multiplies entries and returns the Hadamard product as a new Matrix
///
/// <https://en.wikipedia.org/wiki/Hadamard_product_(matrices)>
// ---------------------------------------------------------------------------
pub fn multiply_matrix_with_matrix_entrywise(
original_matrix: &Self,
weighting_matrix: &Self,
) -> Self {
let mut hadamard_product = Self::default();
for r in 0..R {
for c in 0..C {
hadamard_product.rows[r][c] =
original_matrix.rows[r][c] * weighting_matrix.rows[r][c];
}
}
hadamard_product
}
pub fn multiply_matrix_with_scalar(
multiplicand: &Self,
multiplier: f64,
) -> Self {
let mut product = Self::new(multiplier);
for r in 0..R {
for c in 0..C {
product.rows[r][c] *= multiplicand.rows[r][c];
}
}
product
}
// ---------------------------------------------------------------------------
/// Multiplies all entries by -1.0 and then returns the new negated Matrix
// ---------------------------------------------------------------------------
pub fn negate_matrix(matrix: &Self) -> Self {
let mut negated_matrix = Self::default();
for r in 0..R {
for c in 0..C {
negated_matrix.rows[r][c] = -matrix.rows[r][c];
}
}
negated_matrix
}
// ---------------------------------------------------------------------------
/// Makes a new Matrix with all entries set to the argument
// ---------------------------------------------------------------------------
pub fn new(value: f64) -> Self {
Self {
rows: [[value; C]; R],
}
}
// ---------------------------------------------------------------------------
/// Subtracts the 2nd from the 1st and returns the difference as a new Matrix
// ---------------------------------------------------------------------------
pub fn subtract_matrix_from_matrix(
minuend: &Self,
subtrahend: &Self,
) -> Self {
let mut difference = Self::default();
for r in 0..R {
for c in 0..C {
difference.rows[r][c] = minuend.rows[r][c] - subtrahend.rows[r][c];
}
}
difference
}
// ---------------------------------------------------------------------------
/// Subtracts the 2nd from the 1st and returns the difference as a new Matrix
// ---------------------------------------------------------------------------
pub fn subtract_matrix_from_scalar(
minuend: f64,
subtrahend: &Self,
) -> Self {
let mut difference = Self::new(minuend);
for r in 0..R {
for c in 0..C {
difference.rows[r][c] -= subtrahend.rows[r][c];
}
}
difference
}
// ---------------------------------------------------------------------------
/// Subtracts the 2nd from the 1st and returns the difference as a new Matrix
// ---------------------------------------------------------------------------
pub fn subtract_scalar_from_matrix(
minuend: &Self,
subtrahend: f64,
) -> Self {
let mut difference = Self::default();
for r in 0..R {
for c in 0..C {
difference.rows[r][c] = minuend.rows[r][c] - subtrahend;
}
}
difference
}
}
// Associated functions for a square Matrix ------------------------------------
impl<const R: usize> Matrix<R, R> {
// ---------------------------------------------------------------------------
/// Makes a square matrix with the diagonal values set to 1.0 and all others 0
// ---------------------------------------------------------------------------
pub fn identity() -> Self {
let mut identity_matrix = Self::default();
for r in 0..R {
identity_matrix.rows[r][r] = 1.0;
}
identity_matrix
}
}