1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
// =============================================================================
//! - Financial calculations
//!
//! # Usage
//! - Since any time period can be used, "payment stream" equals "annuity"
//!
//! # Metadata
//! - Copyright: © 1999 - 2022 [`CroftSoft Inc`]
//! - Author: [`David Wallace Croft`]
//! - Rust version: 2022-08-23
//! - Rust since: 2022-07-30
//! - Java version: 2001-10-10
//! - Java since: 1999-08-15
//!
//! # History
//! - Adapted from the Java class com.croftsoft.core.math.FinanceLib
//! - In the Java-based [`CroftSoft Core Library`]
//!
//! [`CroftSoft Core Library`]: https://www.croftsoft.com/library/code/
//! [`CroftSoft Inc`]: https://www.croftsoft.com/
//! [`David Wallace Croft`]: https://www.croftsoft.com/people/david/
// =============================================================================
// -----------------------------------------------------------------------------
/// Replaced by PeriodicSavingsNeeded
// -----------------------------------------------------------------------------
#[deprecated(since = "0.2.0", note = "Replaced by PeriodicSavingsNeeded")]
pub fn annual_savings_needed(
f: f64,
r: f64,
t: f64,
) -> f64 {
f * r / ((1.0 + r).powf(t) - 1.0)
}
// -----------------------------------------------------------------------------
/// Calculates the future value of a cash flow received today
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::FutureValue;
/// assert_eq!(
/// FutureValue {
/// cash_flow: 1.0, // Investing $1 today
/// interest_rate: 0.12, // At 12% per year
/// time_periods: 6.0, // For six years with interest compounded annually
/// }.calculate(),
/// 1.973_822_685_184_001); // Will double your money (see the "Rule of 72")
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug)]
pub struct FutureValue {
/// Cash flow invested or received today
pub cash_flow: f64,
/// Interest, discount, or inflation rate (use 0.01 for 1%)
pub interest_rate: f64,
/// Number of periods from today when the value is evaluated
pub time_periods: f64,
}
impl FutureValue {
pub fn calculate(&self) -> f64 {
let c = self.cash_flow;
let r = self.interest_rate;
let t = self.time_periods;
c * (1.0 + r).powf(t)
}
}
// -----------------------------------------------------------------------------
/// Calculates the future value of a payment stream such as an annuity
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::FutureValuePaymentStream;
/// assert_eq!(
/// FutureValuePaymentStream {
/// cash_income: 10_000.0, // Future payments of $10k per year
/// interest_rate: 0.10, // With 10% interest annually on the payments
/// time_periods: 10.0, // Paying each year for ten years
/// }.calculate(),
/// 159_374.246_010_000_2); // Will be worth ~$159k in the future
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug)]
pub struct FutureValuePaymentStream {
/// Periodic cash income payment starting one period from today
pub cash_income: f64,
/// Periodic interest earned on income (use 0.01 for 1%)
pub interest_rate: f64,
/// Number of periods of cash income
pub time_periods: f64,
}
impl FutureValuePaymentStream {
pub fn calculate(&self) -> f64 {
let c = self.cash_income;
let r = self.interest_rate;
let t = self.time_periods;
c * ((1.0 + r).powf(t) - 1.0) / r
}
}
// -----------------------------------------------------------------------------
/// The calculated discount rate where the net present value is zero
///
/// # Examples
/// ```
/// use com_croftsoft_core::math::finance_lib::*;
/// static POSITIVE_FUTURE_CASH_FLOWS: [f64; 3] = [
/// -2.0, // $2 paid out today
/// 1.10, // $1.10 received a year from today
/// 1.21]; // and another $1.21 received two years from today
/// static NEGATIVE_FUTURE_CASH_FLOWS: [f64; 3] = [
/// 2.0, // $2 received today
/// -1.10, // $1.10 paid out a year from today
/// -1.21]; // and another $1.21 paid out two years from today
/// static IRR_ESTIMATE: f64 = 0.01; // Initial IRR estimate is 1% per year
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &POSITIVE_FUTURE_CASH_FLOWS,
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap(),
/// 0.09999999999999998); // Calculated IRR ~10%
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &POSITIVE_FUTURE_CASH_FLOWS,
/// irr_estimate: 0.0, // Use zero when there is no initial estimate
/// }.calculate().unwrap(),
/// 0.09999999999999998); // Calculated IRR ~10%
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &NEGATIVE_FUTURE_CASH_FLOWS,
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap(),
/// 0.09999999999999998); // Calculated IRR ~10%
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[-1.0, 1.0], // A dollar paid today is returned in a year
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap(),
/// -1.1053349683155043e-17); // Calculated IRR ~0%
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[0.0, -1.0, 1.1], // The first cash flow is in the future
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap(),
/// 0.10000000000000009); // Calculated IRR ~10%
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[1.0, 0.0],
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap_err(),
/// InternalRateOfReturnError::CashFlowsAllNonNegative);
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[-1.0, 0.0],
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap_err(),
/// InternalRateOfReturnError::CashFlowsAllNonPositive);
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[0.0, 0.0], // All zero cash flows
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap_err(),
/// InternalRateOfReturnError::CashFlowsAllZero);
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[], // Zero length cash flows
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap_err(),
/// InternalRateOfReturnError::CashFlowsLengthLessThanTwo);
/// assert_eq!(
/// InternalRateOfReturn {
/// cash_flows: &[-1.0], // Single length cash flows
/// irr_estimate: IRR_ESTIMATE,
/// }.calculate().unwrap_err(),
/// InternalRateOfReturnError::CashFlowsLengthLessThanTwo);
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Debug)]
pub struct InternalRateOfReturn<'a> {
/// Array of cash flows received in the future, indexed from time zero
pub cash_flows: &'a [f64],
/// Initial estimate for the IRR (use 0.10 for 10%; use 0.0 for no estimate)
pub irr_estimate: f64,
}
#[derive(Debug, Eq, PartialEq)]
pub enum InternalRateOfReturnError {
CashFlowsAllNonNegative,
CashFlowsAllNonPositive,
CashFlowsAllZero,
CashFlowsLengthLessThanTwo,
}
impl<'a> InternalRateOfReturn<'a> {
pub fn calculate(&self) -> Result<f64, InternalRateOfReturnError> {
if self.cash_flows.len() < 2 {
return Err(InternalRateOfReturnError::CashFlowsLengthLessThanTwo);
}
let mut has_a_negative_cash_flow = false;
let mut has_a_positive_cash_flow = false;
for cash_flow in self.cash_flows {
if *cash_flow < 0.0 {
has_a_negative_cash_flow = true;
if has_a_positive_cash_flow {
break;
}
} else if *cash_flow > 0.0 {
has_a_positive_cash_flow = true;
if has_a_negative_cash_flow {
break;
}
}
}
if has_a_negative_cash_flow {
if !has_a_positive_cash_flow {
return Err(InternalRateOfReturnError::CashFlowsAllNonPositive);
}
} else if has_a_positive_cash_flow {
return Err(InternalRateOfReturnError::CashFlowsAllNonNegative);
} else {
return Err(InternalRateOfReturnError::CashFlowsAllZero);
}
let mut irr: f64 = self.irr_estimate;
let mut delta_irr: f64 = -0.1 * irr;
if delta_irr == 0.0 {
delta_irr = 0.001;
}
let mut old_npv: f64 = core::f64::NAN;
Ok(loop {
let npv: f64 = NetPresentValue {
cash_flows: self.cash_flows,
discount_rate: irr,
}
.calculate();
if npv == 0.0 {
break irr;
}
if old_npv < 0.0 {
if npv > 0.0 {
delta_irr *= -0.9;
} else if npv > old_npv {
delta_irr *= 1.1;
} else if npv < old_npv {
delta_irr = -delta_irr;
} else {
// where npv == old_npv
break irr;
}
} else if old_npv > 0.0 {
if npv < 0.0 {
delta_irr *= -0.9;
} else if npv < old_npv {
delta_irr *= 1.1;
} else if npv > old_npv {
delta_irr = -delta_irr;
} else {
// where npv == old_npv
break irr;
}
}
if delta_irr == 0.0 {
break irr;
}
irr += delta_irr;
old_npv = npv;
})
}
}
// -----------------------------------------------------------------------------
/// The discounted value of multiple cash flows received in the future
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::NetPresentValue;
/// assert_eq!(
/// NetPresentValue {
/// cash_flows: &[1.0], // A dollar today
/// discount_rate: 0.10, // At a discount rate of 10% per time period
/// }.calculate(),
/// 1.0); // Is worth a dollar today
/// assert_eq!(
/// NetPresentValue {
/// cash_flows: &[0.0, 1.0], // A dollar next year
/// discount_rate: 0.10, // At a discount rate of 10% per year
/// }.calculate(),
/// 0.9090909090909091); // Is worth ~$0.91 today
/// assert_eq!(
/// NetPresentValue {
/// cash_flows: &[0.0, 0.0, 1.0], // A dollar received in two years
/// discount_rate: 0.10, // Discounted at 10% per year
/// }.calculate(),
/// 0.8264462809917354); // Is worth ~$0.83 today
/// assert_eq!(
/// NetPresentValue {
/// cash_flows: &[1.0; 11], // $1 today plus $1 per year for 10 years
/// discount_rate: 0.10, // At a discount rate of 10% per year
/// }.calculate(),
/// 7.144567105704681); // Is worth ~$7.14 today
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Debug)]
pub struct NetPresentValue<'a> {
// Cash flows received in the future indexed from time zero
pub cash_flows: &'a [f64],
/// The discount rate or cost of capital (use 0.01 for 1%)
pub discount_rate: f64,
}
impl<'a> NetPresentValue<'a> {
pub fn calculate(&self) -> f64 {
self.cash_flows.iter().enumerate().fold(0.0, |sum, (index, cash_flow)| {
sum + cash_flow / (1.0 + self.discount_rate).powf(index as f64)
})
}
}
// -----------------------------------------------------------------------------
/// Calculates the periodic investments required to accumulate a future value
///
/// # Examples
/// ```
/// use com_croftsoft_core::math::finance_lib::PeriodicSavingsNeeded;
/// assert_eq!(
/// PeriodicSavingsNeeded {
/// future_value: 1_000_000.0, // To have a million dollars in the future
/// interest_rate: 0.12, // At 12% interest compounded annually
/// time_periods: 10.0, // Investing each year for ten years
/// }.calculate(),
/// 56_984.164_159_844_026); // Invest ~$57k per year
/// assert_eq!(
/// PeriodicSavingsNeeded {
/// future_value: 100_000_000.0, // To have a hundred million cents
/// interest_rate: 0.01, // At 1% interest compounded monthly
/// time_periods: 120.0, // Investing each month for 120 months
/// }.calculate(),
/// 434_709.484_025_873_1); // Invest ~435k cents per month (~$52k per year)
/// let mut calculated_values = [0.0; 12];
/// let mut periodic_savings_needed = PeriodicSavingsNeeded {
/// future_value: 1_000_000.0,
/// interest_rate: 0.00,
/// time_periods: 10.0,
/// };
/// for index in 0..12 {
/// periodic_savings_needed.interest_rate = (index + 1) as f64 / 100.0;
/// calculated_values[index] = periodic_savings_needed.calculate();
/// }
/// assert_eq!(calculated_values[ 0], 95_582.076_551_171_35 ); // @ 1%
/// assert_eq!(calculated_values[ 4], 79_504.574_965_456_62 ); // @ 5%
/// assert_eq!(calculated_values[ 7], 69_029.488_697_075_34 ); // @ 8%
/// assert_eq!(calculated_values[11], 56_984.164_159_844_026); // @ 12%
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug)]
pub struct PeriodicSavingsNeeded {
/// Future value desired
pub future_value: f64,
/// Periodic interest rate (use 0.01 for 1%)
pub interest_rate: f64,
/// Number of time periods of investment
pub time_periods: f64,
}
impl PeriodicSavingsNeeded {
pub fn calculate(&self) -> f64 {
let f = self.future_value;
let r = self.interest_rate;
let t = self.time_periods;
f * r / ((1.0 + r).powf(t) - 1.0)
}
}
// -----------------------------------------------------------------------------
/// The discounted value of a single cash flow received in the future
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::PresentValue;
/// assert_eq!(
/// PresentValue {
/// cash_flow: 1.0, // A dollar in the future
/// discount_rate: 0.10, // With inflation at 10% per year
/// time_periods: 1.0, // Received one year from now
/// }.calculate(),
/// 0.9090909090909091); // Will have the spending power of ~$0.91 today
/// assert_eq!(
/// PresentValue {
/// cash_flow: 1.0, // A dollar in the future
/// discount_rate: 0.10, // If it could be invested today at 10% per year
/// time_periods: 2.0, // Received two years from now
/// }.calculate(),
/// 0.8264462809917354); // Would be worth the same as ~$0.83 invested today
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug)]
pub struct PresentValue {
// Cash flow received in the future
pub cash_flow: f64,
/// The discount rate or inflation rate per time period (use 0.01 for 1%)
pub discount_rate: f64,
/// Number of time periods from today when the cash flow is received
pub time_periods: f64,
}
impl PresentValue {
pub fn calculate(&self) -> f64 {
let c = self.cash_flow;
let r = self.discount_rate;
let t = self.time_periods;
c / (1.0 + r).powf(t)
}
}
// -----------------------------------------------------------------------------
/// The discounted value of varying periodic cash flows
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::PresentValueCashFlows;
/// assert_eq!(
/// PresentValueCashFlows {
/// cash_flows: &[1.0], // A dollar received one year in the future
/// discount_rate: 0.10, // With inflation at 10% per year
/// }.calculate(),
/// 0.9090909090909091); // Will have the spending power of ~$0.91 today
/// assert_eq!(
/// PresentValueCashFlows {
/// cash_flows: &[0.0, 1.0], // A dollar received in two years
/// discount_rate: 0.10, // With interest at 10% per year
/// }.calculate(),
/// 0.8264462809917354); // Would be worth the same as ~$0.83 invested today
/// assert_eq!(
/// PresentValueCashFlows {
/// cash_flows: &[1.0, 2.0, 3.0], // $1, $2, and $3 over 3 years
/// discount_rate: 0.0, // With no inflation
/// }.calculate(),
/// 6.0); // Would be worth $6 today
/// assert_eq!(
/// PresentValueCashFlows {
/// cash_flows: &[1.0, 2.0, 3.0], // $1, $2, and $3 over 3 years
/// discount_rate: 0.10, // With inflation at 10% per year
/// }.calculate(),
/// 4.8159278737791125); // Would be worth ~$4.82 today
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Debug)]
pub struct PresentValueCashFlows<'a> {
// Cash flows received in the future starting one time period from now
pub cash_flows: &'a [f64],
/// The discount rate or inflation rate per time period (use 0.01 for 1%)
pub discount_rate: f64,
}
impl<'a> PresentValueCashFlows<'a> {
pub fn calculate(&self) -> f64 {
self.cash_flows.iter().enumerate().fold(0.0, |sum, (index, cash_flow)| {
sum
+ PresentValue {
cash_flow: *cash_flow,
discount_rate: self.discount_rate,
time_periods: (index + 1) as f64,
}
.calculate()
})
}
}
// -----------------------------------------------------------------------------
/// Calculates the present value of a payment stream such as an annuity
///
/// # Example
/// ```
/// use com_croftsoft_core::math::finance_lib::PresentValuePaymentStream;
/// assert_eq!(
/// PresentValuePaymentStream {
/// cash_flow : 1.0, // A dollar every year starting a year from today
/// inflation_rate: 0.10, // With inflation at 10% per year
/// time_periods: 10.0, // For ten years
/// }.calculate(),
/// 6.144567105704685); // Is the same as receiving ~$6.14 today
/// ```
// -----------------------------------------------------------------------------
#[derive(Clone, Copy, Debug)]
pub struct PresentValuePaymentStream {
// Periodic cash income staring one time period from today
pub cash_flow: f64,
/// The inflation rate or interest rate per time period (use 0.01 for 1%)
pub inflation_rate: f64,
/// Number of time periods of cash income
pub time_periods: f64,
}
impl PresentValuePaymentStream {
pub fn calculate(&self) -> f64 {
let c = self.cash_flow;
let r = self.inflation_rate;
let t = self.time_periods;
c * (1.0 - 1.0 / (1.0 + r).powf(t)) / r
}
}