colorutils_rs/linear_to_image.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/*
* // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
* //
* // Use of this source code is governed by a BSD-style
* // license that can be found in the LICENSE file.
*/
use crate::gamma_curves::TransferFunction;
use crate::image::ImageConfiguration;
use crate::Rgb;
#[cfg(feature = "rayon")]
use rayon::iter::{IndexedParallelIterator, ParallelIterator};
#[cfg(feature = "rayon")]
use rayon::prelude::{ParallelSlice, ParallelSliceMut};
use std::slice;
#[allow(clippy::type_complexity)]
fn linear_to_gamma_channels<const CHANNELS_CONFIGURATION: u8, const USE_ALPHA: bool>(
src: &[f32],
src_stride: u32,
dst: &mut [u8],
dst_stride: u32,
width: u32,
height: u32,
transfer_function: TransferFunction,
) {
let image_configuration: ImageConfiguration = CHANNELS_CONFIGURATION.into();
if USE_ALPHA && !image_configuration.has_alpha() {
panic!("Alpha may be set only on images with alpha");
}
let channels = image_configuration.get_channels_count();
let mut lut_table = vec![0u8; 2049];
for (i, lut) in lut_table.iter_mut().enumerate() {
*lut = (transfer_function.gamma(i as f32 * (1. / 2048.0)) * 255.).min(255.) as u8;
}
let src_slice_safe_align = unsafe {
slice::from_raw_parts(
src.as_ptr() as *const u8,
src_stride as usize * height as usize,
)
};
let iter;
#[cfg(feature = "rayon")]
{
iter = dst
.par_chunks_exact_mut(dst_stride as usize)
.zip(src_slice_safe_align.par_chunks_exact(src_stride as usize));
}
#[cfg(not(feature = "rayon"))]
{
iter = dst
.chunks_exact_mut(dst_stride as usize)
.zip(src_slice_safe_align.chunks_exact(src_stride as usize));
}
iter.for_each(|(dst, src)| unsafe {
let mut _cx = 0usize;
let src_ptr = src.as_ptr() as *const f32;
let dst_ptr = dst.as_mut_ptr();
for x in _cx..width as usize {
let px = x * channels;
let src_slice = src_ptr.add(px);
let r = src_slice
.add(image_configuration.get_r_channel_offset())
.read_unaligned();
let g = src_slice
.add(image_configuration.get_g_channel_offset())
.read_unaligned();
let b = src_slice
.add(image_configuration.get_b_channel_offset())
.read_unaligned();
let rgb = (Rgb::<f32>::new(
r.min(1f32).max(0f32),
g.min(1f32).max(0f32),
b.min(1f32).max(0f32),
) * Rgb::<f32>::dup(2048f32))
.round()
.cast::<u16>();
let dst = dst_ptr.add(px);
dst.add(image_configuration.get_r_channel_offset())
.write_unaligned(*lut_table.get_unchecked(rgb.r.min(2048) as usize));
dst.add(image_configuration.get_g_channel_offset())
.write_unaligned(*lut_table.get_unchecked(rgb.g.min(2048) as usize));
dst.add(image_configuration.get_b_channel_offset())
.write_unaligned(*lut_table.get_unchecked(rgb.b.min(2048) as usize));
if USE_ALPHA && image_configuration.has_alpha() {
let a = src_slice
.add(image_configuration.get_a_channel_offset())
.read_unaligned();
let a_lin = (a * 255f32).round() as u8;
dst.add(image_configuration.get_a_channel_offset())
.write_unaligned(a_lin);
}
}
});
}
/// This function converts Linear to RGB. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains Linear RGB data
/// * `src_stride` - Bytes per row for src data.
/// * `dst` - A mutable slice to receive Gamma RGB data
/// * `dst_stride` - Bytes per row for dst data
/// * `width` - Image width
/// * `height` - Image height
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn linear_to_rgb(
src: &[f32],
src_stride: u32,
dst: &mut [u8],
dst_stride: u32,
width: u32,
height: u32,
transfer_function: TransferFunction,
) {
linear_to_gamma_channels::<{ ImageConfiguration::Rgb as u8 }, false>(
src,
src_stride,
dst,
dst_stride,
width,
height,
transfer_function,
);
}
/// This function converts Linear RGBA to RGBA, Alpha channel will be denormalized. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains Linear RGBA data
/// * `src_stride` - Bytes per row for src data.
/// * `dst` - A mutable slice to receive RGBA data
/// * `dst_stride` - Bytes per row for dst data
/// * `width` - Image width
/// * `height` - Image height
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn linear_to_rgba(
src: &[f32],
src_stride: u32,
dst: &mut [u8],
dst_stride: u32,
width: u32,
height: u32,
transfer_function: TransferFunction,
) {
linear_to_gamma_channels::<{ ImageConfiguration::Rgba as u8 }, true>(
src,
src_stride,
dst,
dst_stride,
width,
height,
transfer_function,
);
}
/// This function converts Linear BGRA to BGRA, Alpha channel will de dernormalizaed. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains Linear BGRA data
/// * `src_stride` - Bytes per row for src data.
/// * `dst` - A mutable slice to receive Gamma BGRA data
/// * `dst_stride` - Bytes per row for dst data
/// * `width` - Image width
/// * `height` - Image height
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn linear_to_bgra(
src: &[f32],
src_stride: u32,
dst: &mut [u8],
dst_stride: u32,
width: u32,
height: u32,
transfer_function: TransferFunction,
) {
linear_to_gamma_channels::<{ ImageConfiguration::Bgra as u8 }, true>(
src,
src_stride,
dst,
dst_stride,
width,
height,
transfer_function,
);
}
/// This function converts Linear BGR to Gamma BGR. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains Linear BGR data
/// * `src_stride` - Bytes per row for src data.
/// * `dst` - A mutable slice to receive BGR data
/// * `dst_stride` - Bytes per row for dst data
/// * `width` - Image width
/// * `height` - Image height
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn linear_to_bgr(
src: &[f32],
src_stride: u32,
dst: &mut [u8],
dst_stride: u32,
width: u32,
height: u32,
transfer_function: TransferFunction,
) {
linear_to_gamma_channels::<{ ImageConfiguration::Bgr as u8 }, false>(
src,
src_stride,
dst,
dst_stride,
width,
height,
transfer_function,
);
}