colorutils_rs/
image_to_linear.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
 * // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
 * //
 * // Use of this source code is governed by a BSD-style
 * // license that can be found in the LICENSE file.
 */
use crate::gamma_curves::TransferFunction;
use crate::image::ImageConfiguration;
use crate::Rgb;
#[cfg(feature = "rayon")]
use rayon::iter::{IndexedParallelIterator, ParallelIterator};
#[cfg(feature = "rayon")]
use rayon::prelude::{ParallelSlice, ParallelSliceMut};
use std::slice;

#[allow(clippy::type_complexity)]
fn channels_to_linear<const CHANNELS_CONFIGURATION: u8, const USE_ALPHA: bool>(
    src: &[u8],
    src_stride: u32,
    dst: &mut [f32],
    dst_stride: u32,
    width: u32,
    height: u32,
    transfer_function: TransferFunction,
) {
    let image_configuration: ImageConfiguration = CHANNELS_CONFIGURATION.into();
    if USE_ALPHA && !image_configuration.has_alpha() {
        panic!("Alpha may be set only on images with alpha");
    }

    let channels = image_configuration.get_channels_count();

    let mut lut_table = vec![0f32; 256];
    for (i, lut) in lut_table.iter_mut().enumerate() {
        *lut = transfer_function.linearize(i as f32 * (1. / 255.0));
    }

    let dst_slice_safe_align = unsafe {
        slice::from_raw_parts_mut(
            dst.as_mut_ptr() as *mut u8,
            dst_stride as usize * height as usize,
        )
    };

    let iter;

    #[cfg(feature = "rayon")]
    {
        iter = dst_slice_safe_align
            .par_chunks_exact_mut(dst_stride as usize)
            .zip(src.par_chunks_exact(src_stride as usize));
    }

    #[cfg(not(feature = "rayon"))]
    {
        iter = dst_slice_safe_align
            .chunks_exact_mut(dst_stride as usize)
            .zip(src.chunks_exact(src_stride as usize));
    }

    iter.for_each(|(dst_row, src_row)| unsafe {
        let mut _cx = 0usize;

        let src_ptr = src_row.as_ptr();
        let dst_ptr = dst_row.as_mut_ptr() as *mut f32;

        for x in _cx..width as usize {
            let px = x * channels;
            let dst = dst_ptr.add(px);
            let src = src_ptr.add(px);
            let r = src
                .add(image_configuration.get_r_channel_offset())
                .read_unaligned();
            let g = src
                .add(image_configuration.get_g_channel_offset())
                .read_unaligned();
            let b = src
                .add(image_configuration.get_b_channel_offset())
                .read_unaligned();

            let rgb = Rgb::<u8>::new(r, g, b);

            dst.add(image_configuration.get_r_channel_offset())
                .write_unaligned(*lut_table.get_unchecked(rgb.r as usize));
            dst.add(image_configuration.get_g_channel_offset())
                .write_unaligned(*lut_table.get_unchecked(rgb.g as usize));
            dst.add(image_configuration.get_b_channel_offset())
                .write_unaligned(*lut_table.get_unchecked(rgb.b as usize));

            if USE_ALPHA && image_configuration.has_alpha() {
                let a = src
                    .add(image_configuration.get_a_channel_offset())
                    .read_unaligned();
                let a_lin = a as f32 * (1f32 / 255f32);
                dst.add(image_configuration.get_a_channel_offset())
                    .write_unaligned(a_lin);
            }
        }
    });
}

/// This function converts RGB to linear colorspace
///
/// This function converts RGB to linear color space. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains RGB data
/// * `src_stride` - Bytes per row for src data.
/// * `width` - Image width
/// * `height` - Image height
/// * `dst` - A mutable slice to receive linear data
/// * `dst_stride` - Bytes per row for dst data
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn rgb_to_linear(
    src: &[u8],
    src_stride: u32,
    dst: &mut [f32],
    dst_stride: u32,
    width: u32,
    height: u32,
    transfer_function: TransferFunction,
) {
    channels_to_linear::<{ ImageConfiguration::Rgb as u8 }, false>(
        src,
        src_stride,
        dst,
        dst_stride,
        width,
        height,
        transfer_function,
    );
}

/// This function converts RGBA to liner color space
///
/// This function converts RGBA to Linear, Alpha channel is normalized. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains RGBA data
/// * `src_stride` - Bytes per row for src data.
/// * `width` - Image width
/// * `height` - Image height
/// * `dst` - A mutable slice to receive Linear data
/// * `dst_stride` - Bytes per row for dst data
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn rgba_to_linear(
    src: &[u8],
    src_stride: u32,
    dst: &mut [f32],
    dst_stride: u32,
    width: u32,
    height: u32,
    transfer_function: TransferFunction,
) {
    channels_to_linear::<{ ImageConfiguration::Rgba as u8 }, true>(
        src,
        src_stride,
        dst,
        dst_stride,
        width,
        height,
        transfer_function,
    );
}

/// This function converts BGRA to Linear.
///
/// This function converts BGRA to Linear, alpha channel is normalized. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains BGRA data
/// * `src_stride` - Bytes per row for src data.
/// * `width` - Image width
/// * `height` - Image height
/// * `dst` - A mutable slice to receive linear data
/// * `dst_stride` - Bytes per row for dst data
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn bgra_to_linear(
    src: &[u8],
    src_stride: u32,
    dst: &mut [f32],
    dst_stride: u32,
    width: u32,
    height: u32,
    transfer_function: TransferFunction,
) {
    channels_to_linear::<{ ImageConfiguration::Bgra as u8 }, true>(
        src,
        src_stride,
        dst,
        dst_stride,
        width,
        height,
        transfer_function,
    );
}

/// This function converts BGR to linear
///
/// This function converts BGR to linear color space. This is much more effective than naive direct transformation
///
/// # Arguments
/// * `src` - A slice contains BGR data
/// * `src_stride` - Bytes per row for src data.
/// * `width` - Image width
/// * `height` - Image height
/// * `dst` - A mutable slice to receive Linear data
/// * `dst_stride` - Bytes per row for dst data
/// * `transfer_function` - Transfer function from gamma to linear space. If you don't have specific pick `Srgb`
pub fn bgr_to_linear(
    src: &[u8],
    src_stride: u32,
    dst: &mut [f32],
    dst_stride: u32,
    width: u32,
    height: u32,
    transfer_function: TransferFunction,
) {
    channels_to_linear::<{ ImageConfiguration::Bgr as u8 }, false>(
        src,
        src_stride,
        dst,
        dst_stride,
        width,
        height,
        transfer_function,
    );
}