colorutils_rs/
xyz.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
 * // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
 * //
 * // Use of this source code is governed by a BSD-style
 * // license that can be found in the LICENSE file.
 */
use crate::gamma_curves::TransferFunction;
use crate::rgb::Rgb;
use crate::{EuclideanDistance, Jzazbz, SRGB_TO_XYZ_D65, XYZ_TO_SRGB_D65};
use erydanos::Euclidean3DDistance;
use num_traits::Pow;
use std::ops::{
    Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};

/// A CIE 1931 XYZ color.
#[repr(C)]
#[derive(Copy, Clone, Debug, Default)]
pub struct Xyz {
    pub x: f32,
    pub y: f32,
    pub z: f32,
}

impl Xyz {
    #[inline]
    pub fn new(x: f32, y: f32, z: f32) -> Self {
        Self { x, y, z }
    }

    #[inline]
    pub fn saturate_x(x: f32) -> f32 {
        #[allow(clippy::manual_clamp)]
        x.max(0f32).min(95.047f32)
    }

    #[inline]
    pub fn saturate_y(y: f32) -> f32 {
        #[allow(clippy::manual_clamp)]
        y.max(0f32).min(100f32)
    }

    #[inline]
    pub fn saturate_z(z: f32) -> f32 {
        #[allow(clippy::manual_clamp)]
        z.max(0f32).min(108.883f32)
    }

    #[inline]
    pub fn scale(&self, by: f32) -> Xyz {
        Xyz {
            x: self.x * by,
            y: self.y * by,
            z: self.z * by,
        }
    }

    /// Scales XYZ to absolute luminance against display
    #[inline]
    pub fn to_absolute_luminance(&self, display_nits: f32) -> Xyz {
        let multiplier = display_nits;
        Xyz::new(
            multiplier * self.x,
            multiplier * self.y,
            multiplier * self.z,
        )
    }

    /// Scales XYZ to absolute luminance against display
    #[inline]
    pub fn to_relative_luminance(&self, display_nits: f32) -> Xyz {
        let multiplier = 1. / display_nits;
        Xyz::new(
            multiplier * self.x,
            multiplier * self.y,
            multiplier * self.z,
        )
    }
}

static XYZ_SCALE_U8: f32 = 1f32 / 255f32;

/// This class avoid to scale by 100 for a reason: in common there are no need to scale by 100 in digital image processing,
/// Normalized values are speeding up computing.
/// if you need this multiply by yourself or use `scaled`
impl Xyz {
    /// Converts into *Xyz*
    #[inline]
    pub fn to_jzazbz(&self) -> Jzazbz {
        Jzazbz::from_xyz(*self)
    }

    /// This functions always use sRGB transfer function and Rec.601 primaries with D65 White point
    #[inline]
    pub fn from_srgb(rgb: Rgb<u8>) -> Self {
        Xyz::from_rgb(rgb, &SRGB_TO_XYZ_D65, TransferFunction::Srgb)
    }

    /// This function converts from non-linear RGB components to XYZ
    /// # Arguments
    /// * `matrix` - Transformation matrix from RGB to XYZ, for example `SRGB_TO_XYZ_D65`
    /// * `transfer_function` - Transfer functions for current colorspace
    #[inline]
    pub fn from_rgb(
        rgb: Rgb<u8>,
        matrix: &[[f32; 3]; 3],
        transfer_function: TransferFunction,
    ) -> Self {
        unsafe {
            let r = transfer_function.linearize(rgb.r as f32 * XYZ_SCALE_U8);
            let g = transfer_function.linearize(rgb.g as f32 * XYZ_SCALE_U8);
            let b = transfer_function.linearize(rgb.b as f32 * XYZ_SCALE_U8);
            Self::new(
                (*(*matrix.get_unchecked(0)).get_unchecked(0)) * r
                    + (*(*matrix.get_unchecked(0)).get_unchecked(1)) * g
                    + (*(*matrix.get_unchecked(0)).get_unchecked(2)) * b,
                (*(*matrix.get_unchecked(1)).get_unchecked(0)) * r
                    + (*(*matrix.get_unchecked(1)).get_unchecked(1)) * g
                    + (*(*matrix.get_unchecked(1)).get_unchecked(2)) * b,
                (*(*matrix.get_unchecked(2)).get_unchecked(0)) * r
                    + (*(*matrix.get_unchecked(2)).get_unchecked(1)) * g
                    + (*(*matrix.get_unchecked(2)).get_unchecked(2)) * b,
            )
        }
    }

    /// This function converts from non-linear RGB components to XYZ
    /// # Arguments
    /// * `matrix` - Transformation matrix from RGB to XYZ, for example `SRGB_TO_XYZ_D65`
    /// * `transfer_function` - Transfer functions for current colorspace
    #[inline]
    pub fn from_linear_rgb(rgb: Rgb<f32>, matrix: &[[f32; 3]; 3]) -> Self {
        unsafe {
            Self::new(
                (*(*matrix.get_unchecked(0)).get_unchecked(0)) * rgb.r
                    + (*(*matrix.get_unchecked(0)).get_unchecked(1)) * rgb.g
                    + (*(*matrix.get_unchecked(0)).get_unchecked(2)) * rgb.b,
                (*(*matrix.get_unchecked(1)).get_unchecked(0)) * rgb.r
                    + (*(*matrix.get_unchecked(1)).get_unchecked(1)) * rgb.g
                    + (*(*matrix.get_unchecked(1)).get_unchecked(2)) * rgb.b,
                (*(*matrix.get_unchecked(2)).get_unchecked(0)) * rgb.r
                    + (*(*matrix.get_unchecked(2)).get_unchecked(1)) * rgb.g
                    + (*(*matrix.get_unchecked(2)).get_unchecked(2)) * rgb.b,
            )
        }
    }

    #[inline]
    pub fn scaled(&self) -> (f32, f32, f32) {
        (self.x * 100f32, self.y * 100f32, self.z * 100f32)
    }

    #[inline]
    pub fn scaled_by(&self, by: f32) -> Xyz {
        Xyz::new(self.x * by, self.y * by, self.z * by)
    }
}

impl Xyz {
    /// This functions always use sRGB transfer function and Rec.601 primaries with D65 White point
    pub fn to_srgb(&self) -> Rgb<u8> {
        self.to_rgb(&XYZ_TO_SRGB_D65, TransferFunction::Srgb)
    }

    /// This functions always use sRGB transfer function and Rec.601 primaries with D65 White point
    /// # Arguments
    /// * `matrix` - Transformation matrix from RGB to XYZ, for example `SRGB_TO_XYZ_D65`
    /// * `transfer_function` - Transfer functions for current colorspace
    #[inline]
    pub fn to_rgb(&self, matrix: &[[f32; 3]; 3], transfer_function: TransferFunction) -> Rgb<u8> {
        let x = self.x;
        let y = self.y;
        let z = self.z;
        unsafe {
            let r = x * (*(*matrix.get_unchecked(0)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(0)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(0)).get_unchecked(2));
            let g = x * (*(*matrix.get_unchecked(1)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(1)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(1)).get_unchecked(2));
            let b = x * (*(*matrix.get_unchecked(2)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(2)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(2)).get_unchecked(2));
            Rgb::<f32>::new(
                transfer_function.gamma(r),
                transfer_function.gamma(g),
                transfer_function.gamma(b),
            )
            .to_u8()
        }
    }

    /// This function converts XYZ to linear RGB
    /// # Arguments
    /// * `matrix` - Transformation matrix from RGB to XYZ, for example `SRGB_TO_XYZ_D65`
    #[inline]
    pub fn to_linear_rgb(&self, matrix: &[[f32; 3]; 3]) -> Rgb<f32> {
        let x = self.x;
        let y = self.y;
        let z = self.z;
        unsafe {
            let r = x * (*(*matrix.get_unchecked(0)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(0)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(0)).get_unchecked(2));
            let g = x * (*(*matrix.get_unchecked(1)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(1)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(1)).get_unchecked(2));
            let b = x * (*(*matrix.get_unchecked(2)).get_unchecked(0))
                + y * (*(*matrix.get_unchecked(2)).get_unchecked(1))
                + z * (*(*matrix.get_unchecked(2)).get_unchecked(2));
            Rgb::<f32>::new(r, g, b)
        }
    }
}

impl EuclideanDistance for Xyz {
    fn euclidean_distance(&self, other: Xyz) -> f32 {
        (self.x - other.x).hypot3(self.y - other.y, self.z - other.z)
    }
}

impl Index<usize> for Xyz {
    type Output = f32;

    fn index(&self, index: usize) -> &f32 {
        match index {
            0 => &self.x,
            1 => &self.y,
            2 => &self.z,
            _ => panic!("Index out of bounds for Xyz"),
        }
    }
}

impl IndexMut<usize> for Xyz {
    fn index_mut(&mut self, index: usize) -> &mut f32 {
        match index {
            0 => &mut self.x,
            1 => &mut self.y,
            2 => &mut self.z,
            _ => panic!("Index out of bounds for Xyz"),
        }
    }
}

impl Add<Xyz> for Xyz {
    type Output = Xyz;

    #[inline]
    fn add(self, rhs: Self) -> Xyz {
        Xyz::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
    }
}

impl Add<f32> for Xyz {
    type Output = Xyz;

    #[inline]
    fn add(self, rhs: f32) -> Xyz {
        Xyz::new(self.x + rhs, self.y + rhs, self.z + rhs)
    }
}

impl AddAssign<Xyz> for Xyz {
    #[inline]
    fn add_assign(&mut self, rhs: Xyz) {
        self.x += rhs.x;
        self.y += rhs.y;
        self.z += rhs.z;
    }
}

impl AddAssign<f32> for Xyz {
    #[inline]
    fn add_assign(&mut self, rhs: f32) {
        self.x += rhs;
        self.y += rhs;
        self.z += rhs;
    }
}

impl Mul<f32> for Xyz {
    type Output = Xyz;

    #[inline]
    fn mul(self, rhs: f32) -> Self::Output {
        Xyz::new(self.x * rhs, self.y * rhs, self.z * rhs)
    }
}

impl Mul<Xyz> for Xyz {
    type Output = Xyz;

    #[inline]
    fn mul(self, rhs: Xyz) -> Self::Output {
        Xyz::new(self.x * rhs.x, self.y * rhs.y, self.z * rhs.z)
    }
}

impl MulAssign<Xyz> for Xyz {
    #[inline]
    fn mul_assign(&mut self, rhs: Xyz) {
        self.x *= rhs.x;
        self.y *= rhs.y;
        self.z *= rhs.z;
    }
}

impl MulAssign<f32> for Xyz {
    #[inline]
    fn mul_assign(&mut self, rhs: f32) {
        self.x *= rhs;
        self.y *= rhs;
        self.z *= rhs;
    }
}

impl Sub<f32> for Xyz {
    type Output = Xyz;

    #[inline]
    fn sub(self, rhs: f32) -> Self::Output {
        Xyz::new(self.x - rhs, self.y - rhs, self.z - rhs)
    }
}

impl Sub<Xyz> for Xyz {
    type Output = Xyz;

    #[inline]
    fn sub(self, rhs: Xyz) -> Self::Output {
        Xyz::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
    }
}

impl SubAssign<f32> for Xyz {
    #[inline]
    fn sub_assign(&mut self, rhs: f32) {
        self.x -= rhs;
        self.y -= rhs;
        self.z -= rhs;
    }
}

impl SubAssign<Xyz> for Xyz {
    #[inline]
    fn sub_assign(&mut self, rhs: Xyz) {
        self.x -= rhs.x;
        self.y -= rhs.y;
        self.z -= rhs.z;
    }
}

impl Div<f32> for Xyz {
    type Output = Xyz;

    #[inline]
    fn div(self, rhs: f32) -> Self::Output {
        Xyz::new(self.x / rhs, self.y / rhs, self.z / rhs)
    }
}

impl Div<Xyz> for Xyz {
    type Output = Xyz;

    #[inline]
    fn div(self, rhs: Xyz) -> Self::Output {
        Xyz::new(self.x / rhs.x, self.y / rhs.y, self.z / rhs.z)
    }
}

impl DivAssign<f32> for Xyz {
    #[inline]
    fn div_assign(&mut self, rhs: f32) {
        self.x /= rhs;
        self.y /= rhs;
        self.z /= rhs;
    }
}

impl DivAssign<Xyz> for Xyz {
    #[inline]
    fn div_assign(&mut self, rhs: Xyz) {
        self.x /= rhs.x;
        self.y /= rhs.y;
        self.z /= rhs.z;
    }
}

impl Neg for Xyz {
    type Output = Xyz;

    #[inline]
    fn neg(self) -> Self::Output {
        Xyz::new(-self.x, -self.y, -self.z)
    }
}

impl Xyz {
    #[inline]
    pub fn sqrt(&self) -> Xyz {
        Xyz::new(
            if self.x < 0. { 0. } else { self.x.sqrt() },
            if self.y < 0. { 0. } else { self.y.sqrt() },
            if self.z < 0. { 0. } else { self.z.sqrt() },
        )
    }

    #[inline]
    pub fn cbrt(&self) -> Xyz {
        Xyz::new(self.x.cbrt(), self.y.cbrt(), self.z.cbrt())
    }
}

impl Pow<f32> for Xyz {
    type Output = Xyz;

    #[inline]
    fn pow(self, rhs: f32) -> Self::Output {
        Xyz::new(self.x.powf(rhs), self.y.powf(rhs), self.z.powf(rhs))
    }
}

impl Pow<Xyz> for Xyz {
    type Output = Xyz;

    #[inline]
    fn pow(self, rhs: Xyz) -> Self::Output {
        Xyz::new(self.x.powf(rhs.x), self.y.powf(rhs.y), self.z.powf(rhs.z))
    }
}