use crate::gamma_curves::TransferFunction;
use crate::rgb::Rgb;
use crate::{EuclideanDistance, Jzazbz, SRGB_TO_XYZ_D65, XYZ_TO_SRGB_D65};
use erydanos::Euclidean3DDistance;
use num_traits::Pow;
use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
#[repr(C)]
#[derive(Copy, Clone, Debug, Default)]
pub struct Xyz {
pub x: f32,
pub y: f32,
pub z: f32,
}
impl Xyz {
#[inline]
pub fn new(x: f32, y: f32, z: f32) -> Self {
Self { x, y, z }
}
#[inline]
pub fn saturate_x(x: f32) -> f32 {
#[allow(clippy::manual_clamp)]
x.max(0f32).min(95.047f32)
}
#[inline]
pub fn saturate_y(y: f32) -> f32 {
#[allow(clippy::manual_clamp)]
y.max(0f32).min(100f32)
}
#[inline]
pub fn saturate_z(z: f32) -> f32 {
#[allow(clippy::manual_clamp)]
z.max(0f32).min(108.883f32)
}
#[inline]
pub fn scale(&self, by: f32) -> Xyz {
Xyz {
x: self.x * by,
y: self.y * by,
z: self.z * by,
}
}
#[inline]
pub fn to_absolute_luminance(&self, display_nits: f32) -> Xyz {
let multiplier = display_nits;
Xyz::new(
multiplier * self.x,
multiplier * self.y,
multiplier * self.z,
)
}
#[inline]
pub fn to_relative_luminance(&self, display_nits: f32) -> Xyz {
let multiplier = 1. / display_nits;
Xyz::new(
multiplier * self.x,
multiplier * self.y,
multiplier * self.z,
)
}
}
static XYZ_SCALE_U8: f32 = 1f32 / 255f32;
impl Xyz {
#[inline]
pub fn to_jzazbz(&self) -> Jzazbz {
Jzazbz::from_xyz(*self)
}
#[inline]
pub fn from_srgb(rgb: Rgb<u8>) -> Self {
Xyz::from_rgb(rgb, &SRGB_TO_XYZ_D65, TransferFunction::Srgb)
}
#[inline]
pub fn from_rgb(
rgb: Rgb<u8>,
matrix: &[[f32; 3]; 3],
transfer_function: TransferFunction,
) -> Self {
unsafe {
let r = transfer_function.linearize(rgb.r as f32 * XYZ_SCALE_U8);
let g = transfer_function.linearize(rgb.g as f32 * XYZ_SCALE_U8);
let b = transfer_function.linearize(rgb.b as f32 * XYZ_SCALE_U8);
Self::new(
(*(*matrix.get_unchecked(0)).get_unchecked(0)) * r
+ (*(*matrix.get_unchecked(0)).get_unchecked(1)) * g
+ (*(*matrix.get_unchecked(0)).get_unchecked(2)) * b,
(*(*matrix.get_unchecked(1)).get_unchecked(0)) * r
+ (*(*matrix.get_unchecked(1)).get_unchecked(1)) * g
+ (*(*matrix.get_unchecked(1)).get_unchecked(2)) * b,
(*(*matrix.get_unchecked(2)).get_unchecked(0)) * r
+ (*(*matrix.get_unchecked(2)).get_unchecked(1)) * g
+ (*(*matrix.get_unchecked(2)).get_unchecked(2)) * b,
)
}
}
#[inline]
pub fn from_linear_rgb(rgb: Rgb<f32>, matrix: &[[f32; 3]; 3]) -> Self {
unsafe {
Self::new(
(*(*matrix.get_unchecked(0)).get_unchecked(0)) * rgb.r
+ (*(*matrix.get_unchecked(0)).get_unchecked(1)) * rgb.g
+ (*(*matrix.get_unchecked(0)).get_unchecked(2)) * rgb.b,
(*(*matrix.get_unchecked(1)).get_unchecked(0)) * rgb.r
+ (*(*matrix.get_unchecked(1)).get_unchecked(1)) * rgb.g
+ (*(*matrix.get_unchecked(1)).get_unchecked(2)) * rgb.b,
(*(*matrix.get_unchecked(2)).get_unchecked(0)) * rgb.r
+ (*(*matrix.get_unchecked(2)).get_unchecked(1)) * rgb.g
+ (*(*matrix.get_unchecked(2)).get_unchecked(2)) * rgb.b,
)
}
}
#[inline]
pub fn scaled(&self) -> (f32, f32, f32) {
(self.x * 100f32, self.y * 100f32, self.z * 100f32)
}
#[inline]
pub fn scaled_by(&self, by: f32) -> Xyz {
Xyz::new(self.x * by, self.y * by, self.z * by)
}
}
impl Xyz {
pub fn to_srgb(&self) -> Rgb<u8> {
self.to_rgb(&XYZ_TO_SRGB_D65, TransferFunction::Srgb)
}
#[inline]
pub fn to_rgb(&self, matrix: &[[f32; 3]; 3], transfer_function: TransferFunction) -> Rgb<u8> {
let x = self.x;
let y = self.y;
let z = self.z;
unsafe {
let r = x * (*(*matrix.get_unchecked(0)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(0)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(0)).get_unchecked(2));
let g = x * (*(*matrix.get_unchecked(1)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(1)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(1)).get_unchecked(2));
let b = x * (*(*matrix.get_unchecked(2)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(2)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(2)).get_unchecked(2));
Rgb::<f32>::new(
transfer_function.gamma(r),
transfer_function.gamma(g),
transfer_function.gamma(b),
)
.to_u8()
}
}
#[inline]
pub fn to_linear_rgb(&self, matrix: &[[f32; 3]; 3]) -> Rgb<f32> {
let x = self.x;
let y = self.y;
let z = self.z;
unsafe {
let r = x * (*(*matrix.get_unchecked(0)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(0)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(0)).get_unchecked(2));
let g = x * (*(*matrix.get_unchecked(1)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(1)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(1)).get_unchecked(2));
let b = x * (*(*matrix.get_unchecked(2)).get_unchecked(0))
+ y * (*(*matrix.get_unchecked(2)).get_unchecked(1))
+ z * (*(*matrix.get_unchecked(2)).get_unchecked(2));
Rgb::<f32>::new(r, g, b)
}
}
}
impl EuclideanDistance for Xyz {
fn euclidean_distance(&self, other: Xyz) -> f32 {
(self.x - other.x).hypot3(self.y - other.y, self.z - other.z)
}
}
impl Index<usize> for Xyz {
type Output = f32;
fn index(&self, index: usize) -> &f32 {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
_ => panic!("Index out of bounds for Xyz"),
}
}
}
impl IndexMut<usize> for Xyz {
fn index_mut(&mut self, index: usize) -> &mut f32 {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => panic!("Index out of bounds for Xyz"),
}
}
}
impl Add<Xyz> for Xyz {
type Output = Xyz;
#[inline]
fn add(self, rhs: Self) -> Xyz {
Xyz::new(self.x + rhs.x, self.y + rhs.y, self.z + rhs.z)
}
}
impl Add<f32> for Xyz {
type Output = Xyz;
#[inline]
fn add(self, rhs: f32) -> Xyz {
Xyz::new(self.x + rhs, self.y + rhs, self.z + rhs)
}
}
impl AddAssign<Xyz> for Xyz {
#[inline]
fn add_assign(&mut self, rhs: Xyz) {
self.x += rhs.x;
self.y += rhs.y;
self.z += rhs.z;
}
}
impl AddAssign<f32> for Xyz {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.x += rhs;
self.y += rhs;
self.z += rhs;
}
}
impl Mul<f32> for Xyz {
type Output = Xyz;
#[inline]
fn mul(self, rhs: f32) -> Self::Output {
Xyz::new(self.x * rhs, self.y * rhs, self.z * rhs)
}
}
impl Mul<Xyz> for Xyz {
type Output = Xyz;
#[inline]
fn mul(self, rhs: Xyz) -> Self::Output {
Xyz::new(self.x * rhs.x, self.y * rhs.y, self.z * rhs.z)
}
}
impl MulAssign<Xyz> for Xyz {
#[inline]
fn mul_assign(&mut self, rhs: Xyz) {
self.x *= rhs.x;
self.y *= rhs.y;
self.z *= rhs.z;
}
}
impl MulAssign<f32> for Xyz {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.x *= rhs;
self.y *= rhs;
self.z *= rhs;
}
}
impl Sub<f32> for Xyz {
type Output = Xyz;
#[inline]
fn sub(self, rhs: f32) -> Self::Output {
Xyz::new(self.x - rhs, self.y - rhs, self.z - rhs)
}
}
impl Sub<Xyz> for Xyz {
type Output = Xyz;
#[inline]
fn sub(self, rhs: Xyz) -> Self::Output {
Xyz::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
impl SubAssign<f32> for Xyz {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.x -= rhs;
self.y -= rhs;
self.z -= rhs;
}
}
impl SubAssign<Xyz> for Xyz {
#[inline]
fn sub_assign(&mut self, rhs: Xyz) {
self.x -= rhs.x;
self.y -= rhs.y;
self.z -= rhs.z;
}
}
impl Div<f32> for Xyz {
type Output = Xyz;
#[inline]
fn div(self, rhs: f32) -> Self::Output {
Xyz::new(self.x / rhs, self.y / rhs, self.z / rhs)
}
}
impl Div<Xyz> for Xyz {
type Output = Xyz;
#[inline]
fn div(self, rhs: Xyz) -> Self::Output {
Xyz::new(self.x / rhs.x, self.y / rhs.y, self.z / rhs.z)
}
}
impl DivAssign<f32> for Xyz {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.x /= rhs;
self.y /= rhs;
self.z /= rhs;
}
}
impl DivAssign<Xyz> for Xyz {
#[inline]
fn div_assign(&mut self, rhs: Xyz) {
self.x /= rhs.x;
self.y /= rhs.y;
self.z /= rhs.z;
}
}
impl Neg for Xyz {
type Output = Xyz;
#[inline]
fn neg(self) -> Self::Output {
Xyz::new(-self.x, -self.y, -self.z)
}
}
impl Xyz {
#[inline]
pub fn sqrt(&self) -> Xyz {
Xyz::new(
if self.x < 0. { 0. } else { self.x.sqrt() },
if self.y < 0. { 0. } else { self.y.sqrt() },
if self.z < 0. { 0. } else { self.z.sqrt() },
)
}
#[inline]
pub fn cbrt(&self) -> Xyz {
Xyz::new(self.x.cbrt(), self.y.cbrt(), self.z.cbrt())
}
}
impl Pow<f32> for Xyz {
type Output = Xyz;
#[inline]
fn pow(self, rhs: f32) -> Self::Output {
Xyz::new(self.x.powf(rhs), self.y.powf(rhs), self.z.powf(rhs))
}
}
impl Pow<Xyz> for Xyz {
type Output = Xyz;
#[inline]
fn pow(self, rhs: Xyz) -> Self::Output {
Xyz::new(self.x.powf(rhs.x), self.y.powf(rhs.y), self.z.powf(rhs.z))
}
}