colorutils_rs/
oklch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/*
 * // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
 * //
 * // Use of this source code is governed by a BSD-style
 * // license that can be found in the LICENSE file.
 */
use crate::{EuclideanDistance, Oklab, Rgb, TaxicabDistance, TransferFunction};
use erydanos::{eatan2f, ehypotf, Cosine, Sine};
use num_traits::Pow;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

/// Represents *Oklch* colorspace
#[repr(C)]
#[derive(Copy, Clone, PartialOrd, PartialEq)]
pub struct Oklch {
    /// Lightness
    pub l: f32,
    /// Chroma
    pub c: f32,
    /// Hue
    pub h: f32,
}

impl Oklch {
    /// Creates new instance
    #[inline]
    pub fn new(l: f32, c: f32, h: f32) -> Oklch {
        Oklch { l, c, h }
    }

    /// Converts *Rgb* into *Oklch*
    ///
    /// # Arguments
    /// `transfer_function` - Transfer function into linear colorspace and its inverse
    #[inline]
    pub fn from_rgb(rgb: Rgb<u8>, transfer_function: TransferFunction) -> Oklch {
        let oklab = rgb.to_oklab(transfer_function);
        Oklch::from_oklab(oklab)
    }

    /// Converts Linear [Rgb] into [Oklch]
    ///
    /// # Arguments
    /// `transfer_function` - Transfer function into linear colorspace and its inverse
    #[inline]
    pub fn from_linear_rgb(rgb: Rgb<f32>) -> Oklch {
        let oklab = Oklab::from_linear_rgb(rgb);
        Oklch::from_oklab(oklab)
    }

    /// Converts [Oklch] into [Rgb]
    ///
    /// # Arguments
    /// `transfer_function` - Transfer function into linear colorspace and its inverse
    #[inline]
    pub fn to_rgb(&self, transfer_function: TransferFunction) -> Rgb<u8> {
        let oklab = self.to_oklab();
        oklab.to_rgb(transfer_function)
    }

    /// Converts [Oklch] into linear [Rgb]
    #[inline]
    pub fn to_linear_rgb(&self) -> Rgb<f32> {
        let oklab = self.to_oklab();
        oklab.to_linear_rgb()
    }

    /// Converts *Oklab* to *Oklch*
    #[inline]
    pub fn from_oklab(oklab: Oklab) -> Oklch {
        let chroma = ehypotf(oklab.b, oklab.a);
        let hue = eatan2f(oklab.b, oklab.a);
        Oklch::new(oklab.l, chroma, hue)
    }

    /// Converts *Oklch* to *Oklab*
    #[inline]
    pub fn to_oklab(&self) -> Oklab {
        let l = self.l;
        let a = self.c * self.h.ecos();
        let b = self.c * self.h.esin();
        Oklab::new(l, a, b)
    }
}

impl EuclideanDistance for Oklch {
    #[inline]
    fn euclidean_distance(&self, other: Self) -> f32 {
        let dl = self.l - other.l;
        let dc = self.c - other.c;
        let dh = self.h - other.h;
        (dl * dl + dc * dc + dh * dh).sqrt()
    }
}

impl TaxicabDistance for Oklch {
    #[inline]
    fn taxicab_distance(&self, other: Self) -> f32 {
        let dl = self.l - other.l;
        let dc = self.c - other.c;
        let dh = self.h - other.h;
        dl.abs() + dc.abs() + dh.abs()
    }
}

impl Add<Oklch> for Oklch {
    type Output = Oklch;

    #[inline]
    fn add(self, rhs: Self) -> Oklch {
        Oklch::new(self.l + rhs.l, self.c + rhs.c, self.h + rhs.h)
    }
}

impl Add<f32> for Oklch {
    type Output = Oklch;

    #[inline]
    fn add(self, rhs: f32) -> Oklch {
        Oklch::new(self.l + rhs, self.c + rhs, self.h + rhs)
    }
}

impl AddAssign<Oklch> for Oklch {
    #[inline]
    fn add_assign(&mut self, rhs: Oklch) {
        self.l += rhs.l;
        self.c += rhs.c;
        self.h += rhs.h;
    }
}

impl AddAssign<f32> for Oklch {
    #[inline]
    fn add_assign(&mut self, rhs: f32) {
        self.l += rhs;
        self.c += rhs;
        self.h += rhs;
    }
}

impl Mul<f32> for Oklch {
    type Output = Oklch;

    #[inline]
    fn mul(self, rhs: f32) -> Self::Output {
        Oklch::new(self.l * rhs, self.c * rhs, self.h * rhs)
    }
}

impl Mul<Oklch> for Oklch {
    type Output = Oklch;

    #[inline]
    fn mul(self, rhs: Oklch) -> Self::Output {
        Oklch::new(self.l * rhs.l, self.c * rhs.c, self.h * rhs.h)
    }
}

impl MulAssign<f32> for Oklch {
    #[inline]
    fn mul_assign(&mut self, rhs: f32) {
        self.l *= rhs;
        self.c *= rhs;
        self.h *= rhs;
    }
}

impl MulAssign<Oklch> for Oklch {
    #[inline]
    fn mul_assign(&mut self, rhs: Oklch) {
        self.l *= rhs.l;
        self.c *= rhs.c;
        self.h *= rhs.h;
    }
}

impl Sub<f32> for Oklch {
    type Output = Oklch;

    #[inline]
    fn sub(self, rhs: f32) -> Self::Output {
        Oklch::new(self.l - rhs, self.c - rhs, self.h - rhs)
    }
}

impl Sub<Oklch> for Oklch {
    type Output = Oklch;

    #[inline]
    fn sub(self, rhs: Oklch) -> Self::Output {
        Oklch::new(self.l - rhs.l, self.c - rhs.c, self.h - rhs.h)
    }
}

impl SubAssign<f32> for Oklch {
    #[inline]
    fn sub_assign(&mut self, rhs: f32) {
        self.l -= rhs;
        self.c -= rhs;
        self.h -= rhs;
    }
}

impl SubAssign<Oklch> for Oklch {
    #[inline]
    fn sub_assign(&mut self, rhs: Oklch) {
        self.l -= rhs.l;
        self.c -= rhs.c;
        self.h -= rhs.h;
    }
}

impl Div<f32> for Oklch {
    type Output = Oklch;

    #[inline]
    fn div(self, rhs: f32) -> Self::Output {
        Oklch::new(self.l / rhs, self.c / rhs, self.h / rhs)
    }
}

impl Div<Oklch> for Oklch {
    type Output = Oklch;

    #[inline]
    fn div(self, rhs: Oklch) -> Self::Output {
        Oklch::new(self.l / rhs.l, self.c / rhs.c, self.h / rhs.h)
    }
}

impl DivAssign<f32> for Oklch {
    #[inline]
    fn div_assign(&mut self, rhs: f32) {
        self.l /= rhs;
        self.c /= rhs;
        self.h /= rhs;
    }
}

impl DivAssign<Oklch> for Oklch {
    #[inline]
    fn div_assign(&mut self, rhs: Oklch) {
        self.l /= rhs.l;
        self.c /= rhs.c;
        self.h /= rhs.h;
    }
}

impl Neg for Oklch {
    type Output = Oklch;

    fn neg(self) -> Self::Output {
        Oklch::new(-self.l, -self.c, -self.h)
    }
}

impl Pow<f32> for Oklch {
    type Output = Oklch;

    #[inline]
    fn pow(self, rhs: f32) -> Self::Output {
        Oklch::new(self.l.powf(rhs), self.c.powf(rhs), self.h.powf(rhs))
    }
}

impl Pow<Oklch> for Oklch {
    type Output = Oklch;

    #[inline]
    fn pow(self, rhs: Oklch) -> Self::Output {
        Oklch::new(self.l.powf(rhs.l), self.c.powf(rhs.c), self.h.powf(rhs.h))
    }
}

impl Oklch {
    #[inline]
    pub fn sqrt(&self) -> Oklch {
        Oklch::new(
            if self.l < 0. { 0. } else { self.l.sqrt() },
            if self.c < 0. { 0. } else { self.c.sqrt() },
            if self.h < 0. { 0. } else { self.h.sqrt() },
        )
    }

    #[inline]
    pub fn cbrt(&self) -> Oklch {
        Oklch::new(self.l.cbrt(), self.c.cbrt(), self.h.cbrt())
    }
}