1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
* // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
* //
* // Use of this source code is governed by a BSD-style
* // license that can be found in the LICENSE file.
*/
//! # Luv
/// Struct representing a color in CIE LUV, a.k.a. L\*u\*v\*, color space
#[derive(Debug, Copy, Clone, Default, PartialOrd)]
pub struct Luv {
/// The L\* value (achromatic luminance) of the colour in 0–100 range.
pub l: f32,
/// The u\* value of the colour.
///
/// Together with v\* value, it defines chromaticity of the colour. The u\*
/// coordinate represents colour’s position on red-green axis with negative
/// values indicating more red and positive more green colour. Typical
/// values are in -134–220 range (but exact range for ‘valid’ colours
/// depends on luminance and v\* value).
pub u: f32,
/// The u\* value of the colour.
///
/// Together with u\* value, it defines chromaticity of the colour. The v\*
/// coordinate represents colour’s position on blue-yellow axis with
/// negative values indicating more blue and positive more yellow colour.
/// Typical values are in -140–122 range (but exact range for ‘valid’
/// colours depends on luminance and u\* value).
pub v: f32,
}
/// Representing a color in cylindrical CIE LCh(uv) color space
#[derive(Debug, Copy, Clone, Default, PartialOrd)]
pub struct LCh {
/// The L\* value (achromatic luminance) of the colour in 0–100 range.
///
/// This is the same value as in the [`Luv`] object.
pub l: f32,
/// The C\*_uv value (chroma) of the colour.
///
/// Together with h_uv, it defines chromaticity of the colour. The typical
/// values of the coordinate go from zero up to around 150 (but exact range
/// for ‘valid’ colours depends on luminance and hue). Zero represents
/// shade of grey.
pub c: f32,
/// The h_uv value (hue) of the colour measured in radians.
///
/// Together with C\*_uv, it defines chromaticity of the colour. The value
/// represents an angle thus it wraps around τ. Typically, the value will
/// be in the -π–π range. The value is undefined if C\*_uv is zero.
pub h: f32,
}
const D65_XYZ: [f32; 3] = [95.047f32, 100.0f32, 108.883f32];
use crate::rgb::Rgb;
use crate::rgba::Rgba;
use crate::xyz::Xyz;
use crate::EuclideanDistance;
use erydanos::Euclidean3DDistance;
pub(crate) const LUV_WHITE_U_PRIME: f32 =
4.0f32 * D65_XYZ[1] / (D65_XYZ[0] + 15.0 * D65_XYZ[1] + 3.0 * D65_XYZ[2]);
pub(crate) const LUV_WHITE_V_PRIME: f32 =
9.0f32 * D65_XYZ[1] / (D65_XYZ[0] + 15.0 * D65_XYZ[1] + 3.0 * D65_XYZ[2]);
pub(crate) const LUV_CUTOFF_FORWARD_Y: f32 = (6f32 / 29f32) * (6f32 / 29f32) * (6f32 / 29f32);
pub(crate) const LUV_MULTIPLIER_FORWARD_Y: f32 = (29f32 / 3f32) * (29f32 / 3f32) * (29f32 / 3f32);
pub(crate) const LUV_MULTIPLIER_INVERSE_Y: f32 = (3f32 / 29f32) * (3f32 / 29f32) * (3f32 / 29f32);
impl Luv {
/// Converts RGB to CIE Luv
#[inline]
pub fn from_rgb(rgb: Rgb<u8>) -> Self {
let xyz = Xyz::from_srgb(rgb);
let [x, y, z] = [xyz.x, xyz.y, xyz.z];
let den = x + 15.0 * y + 3.0 * z;
let l = (if y < LUV_CUTOFF_FORWARD_Y {
LUV_MULTIPLIER_FORWARD_Y * y
} else {
116f32 * y.cbrt() - 16f32
})
.min(100f32)
.max(0f32);
let (u, v);
if den != 0f32 {
let u_prime = 4f32 * x / den;
let v_prime = 9f32 * y / den;
u = 13f32 * l * (u_prime - LUV_WHITE_U_PRIME);
v = 13f32 * l * (v_prime - LUV_WHITE_V_PRIME);
} else {
u = 0f32;
v = 0f32;
}
Luv { l, u, v }
}
//
#[inline]
pub fn from_rgba(rgba: Rgba<u8>) -> Self {
Luv::from_rgb(rgba.to_rgb())
}
pub fn to_rgb(&self) -> Rgb<u8> {
if self.l <= 0f32 {
return Xyz::new(0f32, 0f32, 0f32).to_srgb();
}
let l13 = 1f32 / (13f32 * self.l);
let u = self.u * l13 + LUV_WHITE_U_PRIME;
let v = self.v * l13 + LUV_WHITE_V_PRIME;
let y = if self.l > 8f32 {
((self.l + 16f32) / 116f32).powi(3)
} else {
self.l * LUV_MULTIPLIER_INVERSE_Y
};
let (x, z);
if v != 0f32 {
let den = 1f32 / (4f32 * v);
x = y * 9f32 * u * den;
z = y * (12.0f32 - 3.0f32 * u - 20f32 * v) * den;
} else {
x = 0f32;
z = 0f32;
}
Xyz::new(x, y, z).to_srgb()
}
pub fn new(l: f32, u: f32, v: f32) -> Luv {
Luv { l, u, v }
}
}
impl LCh {
pub fn from_rgb(rgb: Rgb<u8>) -> Self {
LCh::from_luv(Luv::from_rgb(rgb))
}
pub fn from_rgba(rgba: Rgba<u8>) -> Self {
LCh::from_luv(Luv::from_rgba(rgba))
}
pub fn new(l: f32, c: f32, h: f32) -> Self {
LCh { l, c, h }
}
pub fn from_luv(luv: Luv) -> Self {
LCh {
l: luv.l,
c: luv.u.hypot(luv.v),
h: luv.v.atan2(luv.u),
}
}
pub fn to_rgb(&self) -> Rgb<u8> {
self.to_luv().to_rgb()
}
pub fn to_luv(&self) -> Luv {
Luv {
l: self.l,
u: self.c * self.h.cos(),
v: self.c * self.h.sin(),
}
}
}
impl PartialEq<Luv> for Luv {
/// Compares two colours ignoring chromaticity if L\* is zero.
fn eq(&self, other: &Self) -> bool {
if self.l != other.l {
false
} else if self.l == 0.0 {
true
} else {
self.u == other.u && self.v == other.v
}
}
}
impl PartialEq<LCh> for LCh {
/// Compares two colours ignoring chromaticity if L\* is zero and hue if C\*
/// is zero. Hues which are τ apart are compared equal.
fn eq(&self, other: &Self) -> bool {
if self.l != other.l {
false
} else if self.l == 0.0 {
true
} else if self.c != other.c {
false
} else if self.c == 0.0 {
true
} else {
use std::f32::consts::TAU;
self.h.rem_euclid(TAU) == other.h.rem_euclid(TAU)
}
}
}
impl EuclideanDistance for Luv {
fn euclidean_distance(&self, other: Luv) -> f32 {
(self.l - other.l).hypot3(self.u - other.u, self.v - other.v)
}
}
impl EuclideanDistance for LCh {
fn euclidean_distance(&self, other: LCh) -> f32 {
(self.l - other.l).hypot3(self.c - other.c, self.h - other.h)
}
}