1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
use crate::{Euler, Matrix}; use ffi; use glib::translate::*; use std::mem; glib_wrapper! { #[derive(Debug, Hash)] // PartialOrd, Ord, pub struct Quaternion(Boxed<ffi::CoglQuaternion>); match fn { copy => |ptr| ffi::cogl_quaternion_copy(mut_override(ptr)), free => |ptr| ffi::cogl_quaternion_free(ptr), get_type => || ffi::cogl_quaternion_get_gtype(), } } impl Quaternion { /// /// ## `b` /// A `Quaternion` pub fn dot_product(&self, b: &Quaternion) -> f32 { unsafe { ffi::cogl_quaternion_dot_product(self.to_glib_none().0, b.to_glib_none().0) } } /// pub fn get_rotation_angle(&self) -> f32 { unsafe { ffi::cogl_quaternion_get_rotation_angle(self.to_glib_none().0) } } /// /// ## `vector3` /// an allocated 3-float array pub fn get_rotation_axis(&self) -> f32 { unsafe { let mut vector3 = mem::MaybeUninit::uninit(); ffi::cogl_quaternion_get_rotation_axis(self.to_glib_none().0, vector3.as_mut_ptr()); let vector3 = vector3.assume_init(); vector3 } } /// Initializes a quaternion that rotates `angle` degrees around the /// axis vector (`x`, `y`, `z`). The axis vector does not need to be /// normalized. /// /// ## `angle` /// The angle you want to rotate around the given axis /// ## `x` /// The x component of your axis vector about which you want to /// rotate. /// ## `y` /// The y component of your axis vector about which you want to /// rotate. /// ## `z` /// The z component of your axis vector about which you want to /// rotate. pub fn init(&mut self, angle: f32, x: f32, y: f32, z: f32) { unsafe { ffi::cogl_quaternion_init(self.to_glib_none_mut().0, angle, x, y, z); } } //TODO: // /// Initializes a quaternion that rotates `angle` degrees around the // /// given `axis` vector. The axis vector does not need to be // /// normalized. // /// // /// ## `angle` // /// The angle to rotate around `axis3f` // /// ## `axis3f` // /// your 3 component axis vector about which you want to rotate. // pub fn init_from_angle_vector(&mut self, angle: f32, axis3f: f32) { // // unsafe { // // ffi::cogl_quaternion_init_from_angle_vector( // // self.to_glib_none_mut().0, // // angle, // // axis3f, // // ); // // } // } //TODO: // /// Initializes a [w (x, y,z)] quaternion directly from an array of 4 // /// floats: [w,x,y,z]. // /// // /// ## `array` // /// An array of 4 floats w,(x,y,z) // pub fn init_from_array(&mut self, array: f32) { // // unsafe { // // ffi::cogl_quaternion_init_from_array(self.to_glib_none_mut().0, array); // // } // } /// /// ## `euler` /// A `Euler` with which to initialize the quaternion pub fn init_from_euler(&mut self, euler: &Euler) { unsafe { ffi::cogl_quaternion_init_from_euler(self.to_glib_none_mut().0, euler.to_glib_none().0); } } /// Initializes a quaternion from a rotation matrix. /// ## `matrix` /// A rotation matrix with which to initialize the quaternion pub fn init_from_matrix(&mut self, matrix: &Matrix) { unsafe { ffi::cogl_quaternion_init_from_matrix( self.to_glib_none_mut().0, matrix.to_glib_none().0, ); } } /// /// ## `src` /// A `Quaternion` with which to initialize `self` pub fn init_from_quaternion(&mut self, src: &mut Quaternion) { unsafe { ffi::cogl_quaternion_init_from_quaternion( self.to_glib_none_mut().0, src.to_glib_none_mut().0, ); } } /// XXX: check which direction this rotates /// /// ## `angle` /// The angle to rotate around the x axis pub fn init_from_x_rotation(&mut self, angle: f32) { unsafe { ffi::cogl_quaternion_init_from_x_rotation(self.to_glib_none_mut().0, angle); } } /// /// ## `angle` /// The angle to rotate around the y axis pub fn init_from_y_rotation(&mut self, angle: f32) { unsafe { ffi::cogl_quaternion_init_from_y_rotation(self.to_glib_none_mut().0, angle); } } /// /// ## `angle` /// The angle to rotate around the z axis pub fn init_from_z_rotation(&mut self, angle: f32) { unsafe { ffi::cogl_quaternion_init_from_z_rotation(self.to_glib_none_mut().0, angle); } } /// Initializes the quaternion with the canonical quaternion identity /// [1 (0, 0, 0)] which represents no rotation. Multiplying a /// quaternion with this identity leaves the quaternion unchanged. /// /// You might also want to consider using /// `cogl_get_static_identity_quaternion`. /// pub fn init_identity(&mut self) { unsafe { ffi::cogl_quaternion_init_identity(self.to_glib_none_mut().0); } } /// pub fn invert(&mut self) { unsafe { ffi::cogl_quaternion_invert(self.to_glib_none_mut().0); } } /// This combines the rotations of two quaternions into `self`. The /// operation is not commutative so the order is important because AxB /// != BxA. Cogl follows the standard convention for quaternions here /// so the rotations are applied `right` to `left`. This is similar to the /// combining of matrices. /// /// `<note>`It is possible to multiply the `a` quaternion in-place, so /// `self` can be equal to `a` but can't be equal to `b`.`</note>` /// /// ## `left` /// The second `Quaternion` rotation to apply /// ## `right` /// The first `Quaternion` rotation to apply pub fn multiply(&mut self, left: &Quaternion, right: &Quaternion) { unsafe { ffi::cogl_quaternion_multiply( self.to_glib_none_mut().0, left.to_glib_none().0, right.to_glib_none().0, ); } } /// Performs a normalized linear interpolation between two quaternions. /// That is it does a linear interpolation of the quaternion components /// and then normalizes the result. This will follow the shortest arc /// between the two orientations (just like the `slerp` function) but /// will not progress at a constant speed. Unlike `slerp` nlerp is /// commutative which is useful if you are blending animations /// together. (I.e. nlerp (tmp, a, b) followed by nlerp (result, tmp, /// d) is the same as nlerp (tmp, a, d) followed by nlerp (result, tmp, /// b)). Finally nlerp is cheaper than slerp so it can be a good choice /// if you don't need the constant speed property of the `slerp` function. /// /// Notable properties: /// `<itemizedlist>` /// `<listitem>` /// commutative: Yes /// `</listitem>` /// `<listitem>` /// constant velocity: No /// `</listitem>` /// `<listitem>` /// torque minimal (travels along the surface of the 4-sphere): Yes /// `</listitem>` /// `<listitem>` /// faster than `Quaternion::slerp` /// `</listitem>` /// `</itemizedlist>` /// ## `a` /// The first `Quaternion` /// ## `b` /// The second `Quaternion` /// ## `t` /// The factor in the range [0,1] used to interpolate between /// quaterion `a` and `b`. pub fn nlerp(&mut self, a: &Quaternion, b: &Quaternion, t: f32) { unsafe { ffi::cogl_quaternion_nlerp( self.to_glib_none_mut().0, a.to_glib_none().0, b.to_glib_none().0, t, ); } } /// pub fn normalize(&mut self) { unsafe { ffi::cogl_quaternion_normalize(self.to_glib_none_mut().0); } } /// /// ## `exponent` /// the exponent pub fn pow(&mut self, exponent: f32) { unsafe { ffi::cogl_quaternion_pow(self.to_glib_none_mut().0, exponent); } } /// Performs a spherical linear interpolation between two quaternions. /// /// Noteable properties: /// `<itemizedlist>` /// `<listitem>` /// commutative: No /// `</listitem>` /// `<listitem>` /// constant velocity: Yes /// `</listitem>` /// `<listitem>` /// torque minimal (travels along the surface of the 4-sphere): Yes /// `</listitem>` /// `<listitem>` /// more expensive than `Quaternion::nlerp` /// `</listitem>` /// `</itemizedlist>` /// ## `a` /// The first `Quaternion` /// ## `b` /// The second `Quaternion` /// ## `t` /// The factor in the range [0,1] used to interpolate between /// quaternion `a` and `b`. pub fn slerp(&mut self, a: &Quaternion, b: &Quaternion, t: f32) { unsafe { ffi::cogl_quaternion_slerp( self.to_glib_none_mut().0, a.to_glib_none().0, b.to_glib_none().0, t, ); } } /// /// ## `prev` /// A `Quaternion` used before `a` /// ## `a` /// The first `Quaternion` /// ## `b` /// The second `Quaternion` /// ## `next` /// A `Quaternion` that will be used after `b` /// ## `t` /// The factor in the range [0,1] used to interpolate between /// quaternion `a` and `b`. pub fn squad( &mut self, prev: &Quaternion, a: &Quaternion, b: &Quaternion, next: &Quaternion, t: f32, ) { unsafe { ffi::cogl_quaternion_squad( self.to_glib_none_mut().0, prev.to_glib_none().0, a.to_glib_none().0, b.to_glib_none().0, next.to_glib_none().0, t, ); } } //pub fn equal(v1: /*Unimplemented*/Option<Fundamental: Pointer>, v2: /*Unimplemented*/Option<Fundamental: Pointer>) -> Bool { // unsafe { TODO: call cogl_sys:cogl_quaternion_equal() } //} } //TODO: // impl PartialEq for Quaternion { // #[inline] // fn eq(&self, other: &Self) -> bool { // // self.equal(other) // } // } // impl Eq for Quaternion {}