1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
//! A very minimal no_std [Consistent Overhead Byte //! Stuffing](https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing) library //! //! ## Usage //! //! This library provides 2 functions. //! //! `stuff` and `unstuff` which encode and decode according to the COBS standard, //! respectively. //! //! ## Example //! //! ```rust //! let data: [u8; 254] = [ //! // ...snip //! # 0; 254 //! ]; //! //! // Encode the data //! let encoded: [u8; 256] = cobs_rs::stuff(data, 0x00); //! //! // ... snip //! //! // Decode the data //! let decoded: [u8; 254] = cobs_rs::unstuff(encoded, 0x00); //! //! assert_eq!(data, decoded); //! ``` //! //! ## License //! //! Licensed under a __MIT__ license. #![no_std] #![warn(missing_docs)] use core::convert::TryInto; struct MarkerInfo { index: usize, points_to: usize, } impl MarkerInfo { fn adjust_accordingly<const SIZE: usize>( &mut self, out_buffer: &mut [u8; SIZE], new_index: usize, ) { out_buffer[self.index] = (new_index - self.index).try_into().unwrap(); self.index = new_index; self.points_to = new_index + 0xff; } } /// Takes an input buffer and a marker value and COBS-encodes it to an output buffer. /// /// Removes all occurrences of the marker value and adds one occurrence at the end. The returned /// buffer should at least be 2 greater than the input buffer and for every roughly 256 bytes an /// extra byte is conditionally added to the output buffer. All left-over space will and the end of /// the buffer and will be filled with the marker value. /// /// ## Panics /// /// This function panics if the output buffer has too little space to fill the data from the input /// buffer with. /// /// ## Examples /// /// ### Stuffing arbitrary data /// /// ``` /// let transfer: [u8; 256] = cobs_rs::stuff( /// *b"Hi everyone! This is a pretty nifty example.", /// b'i' /// ); /// /// // Now the data won't contain 'i's anymore except for the terminator byte. /// # assert!(transfer[..45].into_iter().all(|byte| *byte != b'i')); /// ``` /// /// ### Making sure there are no null bytes anymore /// /// ``` /// let data = [ /// // ...snip /// # 1 /// ]; /// /// let transfer: [u8; 256] = cobs_rs::stuff(data, 0x00); /// /// // Now the data won't contain null bytes anymore except for the terminator byte. /// ``` pub fn stuff<const INPUT: usize, const OUTPUT: usize>( buff: [u8; INPUT], marker: u8, ) -> [u8; OUTPUT] { let mut output_buffer: [u8; OUTPUT] = [marker; OUTPUT]; // Keep track of where the last marker was. // This always has one in the beginning, which is the overhead byte. let mut last_marker = MarkerInfo { index: 0, points_to: 0xff, }; // Every time we set additional overhead marker, we should increase the offset. // This way we keep track what the relationship is between the input array indices and the // output array indices. let mut overhead_bytes = 1; // Loop through all the input bytes. for i in 0..INPUT { // Fetch the value of the input byte array. let value = buff[i]; if last_marker.points_to == (overhead_bytes + i) { // Update the last marker and set the marker info to this new overhead byte. last_marker.adjust_accordingly(&mut output_buffer, overhead_bytes + i); // Say that we have another overhead byte. overhead_bytes += 1; } // If the current input value is a marker, adjust the previous marker accordingly and skip // the setting of the value, although it doesn't really matter. if value == marker { // Update the last marker value and info to this new marker. last_marker.adjust_accordingly(&mut output_buffer, overhead_bytes + i); continue; } // Update the output buffer value output_buffer[overhead_bytes + i] = value; } // For the last byte we update the previous marker. output_buffer[last_marker.index] = (INPUT + overhead_bytes - last_marker.index) .try_into() .unwrap(); // And we set the value to the marker value in the output buffer. output_buffer[INPUT + overhead_bytes] = marker; output_buffer } /// Takes an input buffer and a marker value and COBS-decodes it to an output buffer. /// /// Removes all overhead bytes, inserts the marker where appropriate and __stops immediately__ when a marker value is found. /// The output buffer can be smaller than the input buffer. The maximum difference being 2 plus 1 /// for every ~256 bytes. /// All left-over space will and the end of the buffer and will be filled with the `0x00` bytes. /// /// ## Panics /// /// This function panics if the output buffer has too little space to fill the data from the input /// buffer with. /// /// ## Examples /// /// ``` /// let transferred_data = [ /// // ... snip /// # 0x01, 0x01, 0x00 /// ]; /// /// // We convert the COBS-encoded transferred_data to the plain data /// // using the unstuff function. /// let plain_data: [u8; 256] = cobs_rs::unstuff(transferred_data, 0x00); /// /// // ... snip /// ``` pub fn unstuff<const INPUT: usize, const OUTPUT: usize>( buff: [u8; INPUT], marker: u8, ) -> [u8; OUTPUT] { let mut output_buffer = [0; OUTPUT]; // Keep track when the next marker will be. Initial this will be after the first overhead byte // value. We have to do minus 1 here, because we start our loop at 1 instead of 0. let mut until_next_marker = buff[0] - 1; // If this bits value is 0xff, we know that the next value will be an overhead byte, so keep // track of that. let mut next_is_overhead_byte = buff[0] == 0xff; // Keep track of the amount of overhead bytes, so that we can compensate for it when filling // our output buffer. let mut overhead_bytes = 1; // We can skip byte since it is the overhead byte we already know about. for i in 1..INPUT { // Fetch the value from the input buffer. let value = buff[i]; // If we value is the marker, we know we have reached the end. if value == marker { break; } // If the current character is a marker or a overhead byte. if until_next_marker == 0 { // We know that the distance to the next marker will be the value of this marker. until_next_marker = value; // If this byte was a overhead byte. if next_is_overhead_byte { // Keep that that we passed another overhead byte. overhead_bytes += 1; } else { // If it wasn't a overhead byte, we can set this byte to the marker byte. output_buffer[i - overhead_bytes] = marker; } // Check whether the next byte will be a overhead byte. next_is_overhead_byte = until_next_marker == 0xff; } else { // If we are not on a marker or overhead byte we can just copy the value over. output_buffer[i - overhead_bytes] = value; } until_next_marker -= 1; } output_buffer } #[cfg(test)] mod tests { use super::*; use core::ops::Range; #[derive(Debug)] struct TestVector<const N: usize, const M: usize> { unencoded_data: [u8; N], encoded_data: [u8; M], } impl<const N: usize, const M: usize> TestVector<N, M> { const fn new(unencoded_data: [u8; N], encoded_data: [u8; M]) -> Self { Self { unencoded_data, encoded_data, } } fn assert_stuff(&self) { assert_eq!(stuff::<N, M>(self.unencoded_data, 0x00), self.encoded_data); } fn assert_unstuff(&self) { assert_eq!( unstuff::<M, N>(self.encoded_data, 0x00), self.unencoded_data ); } fn assert_stuff_then_unstuff(&self) { assert_eq!( unstuff::<M, N>(stuff(self.unencoded_data, 0x00), 0x00), self.unencoded_data ); } fn assert_unstuff_then_stuff(&self) { assert_eq!( stuff::<N, M>(unstuff(self.encoded_data, 0x00), 0x00), self.encoded_data ); } } fn get_range<const N: usize>( mut initial: [u8; N], start_index: usize, range: Range<u8>, ) -> [u8; N] { for (index, value) in range.enumerate() { initial[index + start_index] = value; } initial } const TV_1: TestVector<1, 3> = TestVector::new([0x00], [0x01, 0x01, 0x00]); const TV_2: TestVector<2, 4> = TestVector::new([0x00, 0x00], [0x01, 0x01, 0x01, 0x00]); const TV_3: TestVector<4, 6> = TestVector::new( [0x11, 0x22, 0x00, 0x33], [0x03, 0x11, 0x22, 0x02, 0x33, 0x00], ); const TV_4: TestVector<4, 6> = TestVector::new( [0x11, 0x22, 0x33, 0x44], [0x05, 0x11, 0x22, 0x33, 0x44, 0x00], ); const TV_5: TestVector<4, 6> = TestVector::new( [0x11, 0x00, 0x00, 0x00], [0x02, 0x11, 0x01, 0x01, 0x01, 0x00], ); fn tv_6() -> TestVector<254, 256> { TestVector::new( get_range([0; 254], 0, 0x01..0xff), get_range( { let mut arr = [0; 256]; arr[0] = 0xff; arr }, 1, 0x01..0xff, ), ) } fn tv_7() -> TestVector<255, 257> { TestVector::new( get_range([0; 255], 0, 0x00..0xff), get_range( { let mut arr = [0; 257]; arr[0] = 0x01; arr[1] = 0xff; arr }, 2, 0x01..0xff, ), ) } fn tv_8() -> TestVector<255, 258> { TestVector::new( get_range([0xff; 255], 0, 0x01..0xff), get_range( { let mut arr = [0; 258]; arr[0] = 0xff; arr[255] = 0x02; arr[256] = 0xff; arr }, 1, 0x01..0xff, ), ) } fn tv_9() -> TestVector<255, 258> { TestVector::new( get_range( { let mut arr = [0xff; 255]; arr[254] = 0; arr }, 0, 0x02..0xff, ), get_range( { let mut arr = [0; 258]; arr[0] = 0xff; arr[254] = 0xff; arr[255] = 0x01; arr[256] = 0x01; arr }, 1, 0x02..0xff, ), ) } fn tv_10() -> TestVector<255, 257> { TestVector::new( get_range( { let mut arr = [0xff; 255]; arr[253] = 0x00; arr[254] = 0x01; arr }, 0, 0x03..0xff, ), get_range( { let mut arr = [0; 257]; arr[0] = 0xfe; arr[253] = 0xff; arr[254] = 0x02; arr[255] = 0x01; arr }, 1, 0x03..0xff, ), ) } #[test] fn stuff_test_vectors() { TV_1.assert_stuff(); TV_2.assert_stuff(); TV_3.assert_stuff(); TV_4.assert_stuff(); TV_5.assert_stuff(); tv_6().assert_stuff(); tv_7().assert_stuff(); tv_8().assert_stuff(); tv_9().assert_stuff(); tv_10().assert_stuff(); } #[test] fn unstuff_test_vectors() { TV_1.assert_unstuff(); TV_2.assert_unstuff(); TV_3.assert_unstuff(); TV_4.assert_unstuff(); TV_5.assert_unstuff(); tv_6().assert_unstuff(); tv_7().assert_unstuff(); tv_8().assert_unstuff(); tv_9().assert_unstuff(); tv_10().assert_unstuff(); } #[test] fn inverses() { TV_1.assert_stuff_then_unstuff(); TV_2.assert_stuff_then_unstuff(); TV_3.assert_stuff_then_unstuff(); TV_4.assert_stuff_then_unstuff(); TV_5.assert_stuff_then_unstuff(); tv_6().assert_stuff_then_unstuff(); tv_7().assert_stuff_then_unstuff(); tv_8().assert_stuff_then_unstuff(); tv_9().assert_stuff_then_unstuff(); tv_10().assert_stuff_then_unstuff(); TV_1.assert_unstuff_then_stuff(); TV_2.assert_unstuff_then_stuff(); TV_3.assert_unstuff_then_stuff(); TV_4.assert_unstuff_then_stuff(); TV_5.assert_unstuff_then_stuff(); tv_6().assert_unstuff_then_stuff(); tv_7().assert_unstuff_then_stuff(); tv_8().assert_unstuff_then_stuff(); tv_9().assert_unstuff_then_stuff(); tv_10().assert_unstuff_then_stuff(); } }