1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#![no_std]

use bare_metal::Nr;
use core::cell::UnsafeCell;
use core::result::Result;
use cortex_m::interrupt::free;
use cortex_m::peripheral::{
    SCB,
    scb::VectActive,
};
use core::mem::MaybeUninit;
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering;

pub struct Move<T, I>
{
    data: UnsafeCell<MaybeUninit<T>>,
    state: AtomicUsize,
    inter: I
}

unsafe impl<T, I> Sync for Move<T, I>
where
    T: Send + Sized,
    I: Nr
{}

impl<T, I> Move<T, I>
{
    const UNINIT: usize        = 0;
    const INIT_AND_IDLE: usize = 1;
    const LOCKED: usize        = 2;

    pub const fn new_uninitialized(inter: I) -> Self {
        Move {
            data: UnsafeCell::new(MaybeUninit::uninit()),
            inter,
            state: AtomicUsize::new(Self::UNINIT),
        }
    }

    pub const fn new(data: T, inter: I) -> Self {
        Move {
            data: UnsafeCell::new(MaybeUninit::new(data)),
            inter,
            state: AtomicUsize::new(Self::INIT_AND_IDLE),
        }
    }
}

impl<T, I> Move<T, I>
where
    T: Send + Sized,
    I: Nr
{
    /// Attempt to initialize the data of the `Move` structure.
    /// This *MUST* be called from non-interrupt context, and a critical
    /// section will be in place while setting the data.
    ///
    /// Returns:
    ///
    /// * Ok(Some(T)): If we are in thread mode and the data was previously initialized
    /// * Ok(None): If we are in thread mode and the data was not previously initialized
    /// * Err(()): If we are not in thread mode (e.g. an interrupt is active)
    pub fn try_move(&self, data: T) -> Result<Option<T>, T> {
        free(|_cs| {
            // Check if we are in non-interrupt context
            match SCB::vect_active() {
                // TODO: Would it be reasonable to initialize this from a DIFFERENT
                // interrupt context? Basically anything but the destination interrupt?
                VectActive::ThreadMode => {},
                _ => {
                    return Err(data);
                }
            }

            // Since we are in a critical section, it is not necessary to perform
            // an atomic compare and swap, as we cannot be pre-empted
            match self.state.load(Ordering::SeqCst) {
                Self::UNINIT => {
                    unsafe {
                        let mu_ref = &mut *self.data.get();
                        let dat_ptr = mu_ref.as_mut_ptr();
                        dat_ptr.write(data);
                    }
                    self.state.store(Self::INIT_AND_IDLE, Ordering::SeqCst);
                    Ok(None)
                }
                Self::INIT_AND_IDLE => {
                    let old = unsafe {
                        let mu_ref = &mut *self.data.get();
                        let dat_ptr = mu_ref.as_mut_ptr();
                        dat_ptr.replace(data)
                    };
                    Ok(Some(old))
                }
                Self::LOCKED | _ => {
                    Err(data)
                }
            }
        })
    }

    /// Attempt to recover the data from the `Move` structure.
    /// This *MUST* be called from non-interrupt context, and a critical
    /// section will be in place while receiving the data.
    ///
    /// Returns:
    ///
    /// * Ok(Some(T)): If we are in thread mode and the data was previously initialized
    /// * Ok(None): If we are in thread mode and the data was not previously initialized
    /// * Err(()): If we are not in thread mode (e.g. an interrupt is active)
    pub fn try_free(&self) -> Result<Option<T>, ()> {
        free(|_cs| {
            // Check if we are in non-interrupt context
            match SCB::vect_active() {
                // TODO: Would it be reasonable to free this from a DIFFERENT
                // interrupt context? Basically anything but the destination interrupt?
                VectActive::ThreadMode => {},
                _ => {
                    return Err(());
                }
            }

            // Since we are in a critical section, it is not necessary to perform
            // an atomic compare and swap, as we cannot be pre-empted
            match self.state.load(Ordering::SeqCst) {
                Self::UNINIT => {
                    Ok(None)
                }
                Self::INIT_AND_IDLE => {
                    let old = unsafe {
                        let mu_ptr = self.data.get();
                        mu_ptr.replace(MaybeUninit::uninit()).assume_init()
                    };

                    self.state.store(Self::UNINIT, Ordering::SeqCst);

                    Ok(Some(old))
                }
                Self::LOCKED | _ => {
                    Err(())
                }
            }
        })
    }

    /// So, this isn't a classical mutex. It will *only* provide access if:
    ///
    /// * The selected interrupt is currently active
    /// * The mutex has not already been locked
    ///
    /// If these conditions are met, then you can access the variable from within
    /// a closure
    pub fn try_lock<R>(&self, f: impl FnOnce(&mut T) -> R) -> Result<R, ()> {
        match SCB::vect_active() {
            VectActive::Interrupt{ irqn } if irqn == self.inter.nr() => {
                // Okay to go ahead
            }
            _ => {
                return Err(())
            }
        };

        // We know that the current interrupt is active, which means
        // that thread mode cannot resume until we exit this function.
        // We don't need to worry about compare and swap, because we
        // are now the only ones who can access this data
        match self.state.load(Ordering::SeqCst) {

            // The data is uninitialized. Don't provide access
            Self::UNINIT => {
                Err(())
            }

            // The data is initialized, allow access within a closure
            // This prevents re-entrancy of re-calling lock within the
            // closure
            Self::INIT_AND_IDLE => {
                self.state.store(Self::LOCKED, Ordering::SeqCst);

                let dat_ref = unsafe {
                    let mu_ref = &mut *self.data.get();
                    let dat_ptr = mu_ref.as_mut_ptr();
                    &mut *dat_ptr
                };

                let ret = f(dat_ref);

                self.state.store(Self::INIT_AND_IDLE, Ordering::SeqCst);

                Ok(ret)
            }

            // The data is locked, or the status register is garbage.
            // Don't provide access
            Self::LOCKED | _ => {
                Err(())
            }
        }
    }
}