1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#![allow(clippy::inline_always)]

use alloc::collections::{BTreeMap, BTreeSet};
use alloc::vec::Vec;
use core::primitive::str;

use crate::edn::Edn;
use crate::error::{Code, Error};

const DELIMITERS: [char; 8] = [',', ']', '}', ')', ';', '(', '[', '{'];

#[derive(Debug)]
struct Walker {
  ptr: usize,
  column: usize,
  line: usize,
}

impl Default for Walker {
  fn default() -> Self {
    Self { ptr: 0, column: 1, line: 1 }
  }
}

impl Walker {
  // Slurps until whitespace or delimiter, returning the slice.
  #[inline(always)]
  fn slurp_literal<'w>(&mut self, slice: &'w str) -> &'w str {
    let token = slice[self.ptr..]
      .split(|c: char| c.is_whitespace() || DELIMITERS.contains(&c))
      .next()
      .expect("Expected at least an empty slice");

    self.ptr += token.len();
    self.column += token.len();
    token
  }

  // Slurps a char. Special handling for chars that happen to be delimiters
  #[inline(always)]
  fn slurp_char<'a>(&mut self, slice: &'a str) -> &'a str {
    let starting_ptr = self.ptr;

    let mut ptr = 0;
    while let Some(c) = self.peek_next(slice) {
      // first is always \\, second is always a char we want.
      // Handles edge cases of having a valid "\\[" but also "\\c[lolthisisvalidedn"
      if ptr > 1 && (c.is_whitespace() || DELIMITERS.contains(&c)) {
        break;
      }

      let _ = self.nibble_next(slice);
      ptr += c.len_utf8();
    }
    &slice[starting_ptr..starting_ptr + ptr]
  }

  #[inline(always)]
  fn slurp_str<'w>(&mut self, slice: &'w str) -> Result<Edn<'w>, Error> {
    let _ = self.nibble_next(slice); // Consume the leading '"' char
    let starting_ptr = self.ptr;
    let mut escape = false;
    loop {
      if let Some(c) = self.nibble_next(slice) {
        if escape {
          match c {
            't' | 'r' | 'n' | '\\' | '\"' => (),
            _ => {
              return Err(Error {
                code: Code::InvalidEscape,
                column: Some(self.column),
                line: Some(self.line),
                ptr: Some(self.ptr),
              })
            }
          }
          escape = false;
        } else if c == '\"' {
          return Ok(Edn::Str(&slice[starting_ptr..self.ptr - 1]));
        } else {
          escape = c == '\\';
        }
      } else {
        return Err(Error {
          code: Code::UnexpectedEOF,
          column: Some(self.column),
          line: Some(self.line),
          ptr: Some(self.ptr),
        });
      }
    }
  }

  // Nibbles away until the next new line
  #[inline(always)]
  fn nibble_newline(&mut self, slice: &str) {
    let len = slice[self.ptr..].split('\n').next().expect("Expected at least an empty slice");
    self.ptr += len.len();
    self.nibble_whitespace(slice);
  }

  // Nibbles away until the start of the next form
  #[inline(always)]
  fn nibble_whitespace(&mut self, slice: &str) {
    while let Some(n) = self.peek_next(slice) {
      if n == ',' || n.is_whitespace() {
        let _ = self.nibble_next(slice);
        continue;
      }
      break;
    }
  }

  // Consumes next
  #[inline(always)]
  fn nibble_next<'w>(&'w mut self, slice: &'w str) -> Option<char> {
    let char = slice[self.ptr..].chars().next();
    if let Some(c) = char {
      self.ptr += c.len_utf8();
      if c == '\n' {
        self.line += 1;
        self.column = 1;
      } else {
        self.column += 1;
      }
    }
    char
  }

  // Peek into the next char
  #[inline(always)]
  fn peek_next(&self, slice: &str) -> Option<char> {
    slice[self.ptr..].chars().next()
  }
}

pub fn parse(edn: &str) -> Result<(Edn<'_>, &str), Error> {
  let mut walker = Walker::default();
  let internal_parse = parse_internal(&mut walker, edn)?;
  internal_parse
    .map_or_else(|| Ok((Edn::Nil, &edn[walker.ptr..])), |ip| Ok((ip, &edn[walker.ptr..])))
}

#[inline]
fn parse_internal<'e>(walker: &mut Walker, slice: &'e str) -> Result<Option<Edn<'e>>, Error> {
  walker.nibble_whitespace(slice);
  while let Some(next) = walker.peek_next(slice) {
    let column_start = walker.column;
    let ptr_start = walker.ptr;
    let line_start = walker.line;
    if let Some(ret) = match next {
      '\\' => match parse_char(walker.slurp_char(slice)) {
        Ok(edn) => Some(Ok(edn)),
        Err(code) => {
          return Err(Error {
            code,
            line: Some(walker.line),
            column: Some(column_start),
            ptr: Some(walker.ptr),
          })
        }
      },
      '\"' => Some(walker.slurp_str(slice)),
      // comment. consume until a new line.
      ';' => {
        walker.nibble_newline(slice);
        None
      }
      '[' => return Ok(Some(parse_vector(walker, slice, ']')?)),
      '(' => return Ok(Some(parse_vector(walker, slice, ')')?)),
      '{' => return Ok(Some(parse_map(walker, slice)?)),
      '#' => parse_tag_set_discard(walker, slice)?.map(Ok),
      // non-string literal case
      _ => match edn_literal(walker.slurp_literal(slice)) {
        Ok(edn) => match edn {
          Some(e) => Some(Ok(e)),
          None => {
            return Ok(None);
          }
        },
        Err(code) => {
          return Err(Error {
            code,
            line: Some(line_start),
            column: Some(column_start),
            ptr: Some(ptr_start),
          })
        }
      },
    } {
      return Ok(Some(ret?));
    }
  }
  Ok(None)
}

#[inline]
fn parse_tag_set_discard<'e>(
  walker: &mut Walker,
  slice: &'e str,
) -> Result<Option<Edn<'e>>, Error> {
  let _ = walker.nibble_next(slice); // Consume the leading '#' char

  match walker.peek_next(slice) {
    Some('{') => parse_set(walker, slice).map(Some),
    Some('_') => parse_discard(walker, slice),
    _ => parse_tag(walker).map(Some),
  }
}

#[inline]
fn parse_discard<'e>(walker: &mut Walker, slice: &'e str) -> Result<Option<Edn<'e>>, Error> {
  let _ = walker.nibble_next(slice); // Consume the leading '_' char
  Ok(match parse_internal(walker, slice)? {
    None => {
      return Err(Error {
        code: Code::UnexpectedEOF,
        line: Some(walker.line),
        column: Some(walker.column),
        ptr: Some(walker.ptr),
      })
    }
    _ => match walker.peek_next(slice) {
      Some(_) => parse_internal(walker, slice)?,
      None => return Ok(Some(Edn::Nil)),
    },
  })
}

#[inline]
fn parse_set<'e>(walker: &mut Walker, slice: &'e str) -> Result<Edn<'e>, Error> {
  let _ = walker.nibble_next(slice); // Consume the leading '{' char
  let mut set: BTreeSet<Edn<'_>> = BTreeSet::new();

  loop {
    walker.nibble_whitespace(slice);
    match walker.peek_next(slice) {
      Some('}') => {
        let _ = walker.nibble_next(slice);
        return Ok(Edn::Set(set));
      }
      Some(n) => {
        if n == ']' || n == ')' {
          return Err(Error {
            code: Code::UnmatchedDelimiter(n),
            line: Some(walker.line),
            column: Some(walker.column),
            ptr: Some(walker.ptr),
          });
        }

        if let Some(n) = parse_internal(walker, slice)? {
          if !set.insert(n) {
            return Err(Error {
              code: Code::SetDuplicateKey,
              line: Some(walker.line),
              column: Some(walker.column),
              ptr: Some(walker.ptr),
            });
          };
        }
      }
      _ => {
        return Err(Error {
          code: Code::UnexpectedEOF,
          line: Some(walker.line),
          column: Some(walker.column),
          ptr: Some(walker.ptr),
        })
      }
    }
  }
}

#[inline]
#[allow(clippy::needless_pass_by_ref_mut)]
fn parse_tag<'e>(walker: &mut Walker) -> Result<Edn<'e>, Error> {
  Err(Error {
    code: Code::Unimplemented("Tagged Element"),
    line: Some(walker.line),
    column: Some(walker.column),
    ptr: Some(walker.ptr),
  })
}

#[inline]
fn parse_map<'e>(walker: &mut Walker, slice: &'e str) -> Result<Edn<'e>, Error> {
  let _ = walker.nibble_next(slice); // Consume the leading '{' char
  let mut map: BTreeMap<Edn<'_>, Edn<'_>> = BTreeMap::new();
  loop {
    walker.nibble_whitespace(slice);
    match walker.peek_next(slice) {
      Some('}') => {
        let _ = walker.nibble_next(slice);
        return Ok(Edn::Map(map));
      }
      Some(n) => {
        if n == ']' || n == ')' {
          return Err(Error {
            code: Code::UnmatchedDelimiter(n),
            line: Some(walker.line),
            column: Some(walker.column),
            ptr: Some(walker.ptr),
          });
        }

        let key = parse_internal(walker, slice)?;
        let val = parse_internal(walker, slice)?;

        // When this is not true, errors are caught on the next loop
        if let (Some(k), Some(v)) = (key, val) {
          // Existing keys are considered an error
          if map.insert(k, v).is_some() {
            return Err(Error {
              code: Code::HashMapDuplicateKey,
              line: Some(walker.line),
              column: Some(walker.column),
              ptr: Some(walker.ptr),
            });
          }
        }
      }
      _ => {
        return Err(Error {
          code: Code::UnexpectedEOF,
          line: Some(walker.line),
          column: Some(walker.column),
          ptr: Some(walker.ptr),
        })
      }
    }
  }
}

#[inline]
fn parse_vector<'e>(walker: &mut Walker, slice: &'e str, delim: char) -> Result<Edn<'e>, Error> {
  let _ = walker.nibble_next(slice); // Consume the leading '[' or '(' char
  let mut vec = Vec::new();

  loop {
    walker.nibble_whitespace(slice);
    match walker.peek_next(slice) {
      Some(p) => {
        if p == delim {
          let _ = walker.nibble_next(slice);
          if delim == ']' {
            return Ok(Edn::Vector(vec));
          }

          return Ok(Edn::List(vec));
        }

        if let Some(next) = parse_internal(walker, slice)? {
          vec.push(next);
        } else if let Some(p) = walker.peek_next(slice) {
          if p != delim {
            let _ = walker.nibble_next(slice);
          }
        }
      }
      _ => {
        return Err(Error {
          code: Code::UnexpectedEOF,
          line: Some(walker.line),
          column: Some(walker.column),
          ptr: Some(walker.ptr),
        })
      }
    }
  }
}

#[inline]
fn edn_literal(literal: &str) -> Result<Option<Edn<'_>>, Code> {
  fn numeric(s: &str) -> bool {
    let (first, second) = {
      let mut s = s.chars();
      (s.next(), s.next())
    };

    let first = first.expect("Empty str is previously caught as nil");
    if first.is_numeric() {
      return true;
    }

    if first == '-' || first == '+' {
      if let Some(s) = second {
        if s.is_numeric() {
          return true;
        }
      }
    }

    false
  }

  Ok(match literal {
    "nil" => Some(Edn::Nil),
    "true" => Some(Edn::Bool(true)),
    "false" => Some(Edn::Bool(false)),
    "" => None,
    k if k.starts_with(':') => {
      if k.len() <= 1 {
        return Err(Code::InvalidKeyword);
      }
      Some(Edn::Key(k))
    }
    n if numeric(n) => return Ok(Some(parse_number(n)?)),
    _ => Some(Edn::Symbol(literal)),
  })
}

#[inline]
fn parse_char(lit: &str) -> Result<Edn<'_>, Code> {
  let lit = &lit[1..]; // ignore the leading '\\'
  match lit {
    "newline" => Ok(Edn::Char('\n')),
    "return" => Ok(Edn::Char('\r')),
    "tab" => Ok(Edn::Char('\t')),
    "space" => Ok(Edn::Char(' ')),
    c if c.len() == 1 => Ok(Edn::Char(c.chars().next().expect("c must be len of 1"))),
    _ => Err(Code::InvalidChar),
  }
}

#[inline]
fn parse_number(lit: &str) -> Result<Edn<'_>, Code> {
  let mut chars = lit.chars().peekable();
  let (number, radix, polarity) = {
    let mut num_ptr_start = 0;
    let polarity = chars.peek().map_or(1i8, |c| {
      if *c == '-' {
        num_ptr_start += 1;
        -1i8
      } else if *c == '+' {
        // The EDN spec allows for a redundant '+' symbol, we just ignore it.
        num_ptr_start += 1;
        1i8
      } else {
        1i8
      }
    });

    let mut number = &lit[num_ptr_start..];

    if number.to_lowercase().starts_with("0x") {
      number = &number[2..];
      (number, 16, polarity)
    } else if let Some(index) = number.to_lowercase().find('r') {
      let radix = (number[0..index]).parse::<u8>();

      match radix {
        Ok(r) => {
          // from_str_radix panics if radix is not in the range from 2 to 36
          if !(2..=36).contains(&r) {
            return Err(Code::InvalidRadix(Some(r)));
          }

          number = &number[(index + 1)..];
          (number, r, polarity)
        }
        Err(_) => {
          return Err(Code::InvalidRadix(None));
        }
      }
    } else {
      (number, 10, polarity)
    }
  };

  if let Ok(n) = i64::from_str_radix(number, radix.into()) {
    return Ok(Edn::Int(n * i64::from(polarity)));
  }
  #[cfg(feature = "floats")]
  if let Ok(n) = number.parse::<f64>() {
    return Ok(Edn::Double((n * f64::from(polarity)).into()));
  }
  if let Some((n, d)) = num_den_from_slice(number) {
    return Ok(Edn::Rational((n, d)));
  }

  Err(Code::InvalidNumber)
}

#[inline]
fn num_den_from_slice(slice: &str) -> Option<(i64, i64)> {
  let index = slice.find('/');

  if let Some(i) = index {
    let (num, den) = slice.split_at(i); // This can't panic because the index is valid
    let num = num.parse::<i64>();
    let den = den[1..].parse::<i64>();

    if let (Ok(n), Ok(d)) = (num, den) {
      return Some((n, d));
    }
  }
  None
}