1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
//! Provides a message dispatch service where each receiver is aware of messages passed to other
//! peers. In particular, if a message is sent to some receiver `r`, another receiver `r'` will be
//! aware that one message has been dispatched when it does a subsequent read. Furthermore, the
//! dispatcher ensures that messages are delivered in order by not emitting data until all input
//! sources have confirmed that they will not send data with lower sequence numbers.
//!
//! The library ensures that a sender will not block due to the slowness of a receiver that is not
//! the intended recipient of the message in question. For example, if there are two receivers, `r`
//! and `r'`, `r.send(v)` will not block even though `r'` is not currently reading from its input
//! channel.
//!
//! The library is implemented by routing all messages through a single dispatcher.
//! This central dispatcher operates in one of two modes, *forwarding* or *serializing*.
//!
//!  - In serializing mode, it assigns a monotonically increasing timestamp to each message, and
//!    forwards it to the intended recipient's queue.
//!  - In forwarding mode, it accepts timestamped messages from sources, and outputs them to the
//!    intended recipients *in order*. Messages are buffered by the dispatcher until each of the
//!    receiver's sources are at least as up-to-date as the message's timestamp. These timestamps
//!    *must* be sequentially assigned, but *may* be sent to the dispatcher in any order. The
//!    dispatcher guarantees that they are delivered in-order.
//!
//! This dual-mode operation allows dispatchers to be composed in a hierarchical fashion, with a
//! serializing dispatcher at the "top", and forwarding dispatchers "below".
//!
//! # Examples:
//!
//! Simple usage:
//!
//! ```
//! use std::thread;
//! use clocked_dispatch;
//!
//! // Create a dispatcher
//! let d = clocked_dispatch::new(1);
//!
//! // Create a simple streaming channel
//! let (tx, rx) = d.new("atx1", "arx");
//! thread::spawn(move|| {
//!     tx.send(10);
//! });
//! assert_eq!(rx.recv().unwrap().0.unwrap(), 10);
//! ```
//!
//! Shared usage:
//!
//! ```
//! use std::thread;
//! use clocked_dispatch;
//!
//! // Create a dispatcher.
//! // Notice that we need more buffer space to the dispatcher here.
//! // This is because clone() needs to talk to the dispatcher, but the buffer to the dispatcher
//! // may already have been filled up by the sends in the threads we spawned.
//! let d = clocked_dispatch::new(10);
//!
//! // Create a shared channel that can be sent along from many threads
//! // where tx is the sending half (tx for transmission), and rx is the receiving
//! // half (rx for receiving).
//! let (tx, rx) = d.new("atx", "arx");
//! for i in 0..10 {
//!     let tx = tx.clone(format!("atx{}", i));
//!     thread::spawn(move|| {
//!         tx.send(i);
//!     });
//! }
//!
//! for _ in 0..10 {
//!     let j = rx.recv().unwrap().0.unwrap();
//!     assert!(0 <= j && j < 10);
//! }
//! ```
//!
//! Accessing timestamps:
//!
//! ```
//! use clocked_dispatch;
//! let m = clocked_dispatch::new(10);
//! let (tx_a, rx_a) = m.new("atx1", "a");
//!
//! // notice that we can't use _ here even though tx_b is unused because
//! // then tx_b would be dropped, causing rx_b to be closed immediately
//! let (tx_b, rx_b) = m.new("btx1", "b");
//! let _ = tx_b;
//!
//! tx_a.send("a1");
//! let x = rx_a.recv().unwrap();
//! assert_eq!(x.0, Some("a1"));
//! assert_eq!(rx_b.recv(), Ok((None, x.1)));
//!
//! tx_a.send("a2");
//! tx_a.send("a3");
//!
//! let a1 = rx_a.recv().unwrap();
//! assert_eq!(a1.0, Some("a2"));
//!
//! let a2 = rx_a.recv().unwrap();
//! assert_eq!(a2.0, Some("a3"));
//!
//! // b must see the timestamp from either a1 or a2
//! // it could see a1 if a2 hasn't yet been delivered
//! let b = rx_b.recv().unwrap();
//! assert_eq!(b.0, None);
//! assert!(b.1 == a1.1 || b.1 == a2.1);
//! ```
//!
//! In-order delivery
//!
//! ```
//! use clocked_dispatch;
//! use std::sync::mpsc;
//!
//! let m = clocked_dispatch::new(10);
//! let (tx1, rx) = m.new("tx1", "a");
//! let tx2 = tx1.clone("tx2");
//!
//! tx1.forward(Some("a1"), 1);
//! assert_eq!(rx.try_recv(), Err(mpsc::TryRecvError::Empty));
//!
//! tx2.forward(None, 1);
//! assert_eq!(rx.recv(), Ok((Some("a1"), 1)));
//! ```

extern crate rand;

use std::sync::{Arc, Mutex, Condvar};
use std::cmp::Ordering;
use std::collections::HashMap;
use std::collections::HashSet;
use std::collections::VecDeque;
use std::collections::BinaryHeap;
use std::sync::mpsc;
use std::thread;
use std::sync;

macro_rules! debug {
    ( $fmt:expr ) => {
        // println!($fmt);
    };
    ( $fmt:expr, $( $args:expr ),+ ) => {
        // println!($fmt, $($args),*);
        $(let _ = $args;)*;
    };
}

struct TaggedData<T> {
    from: String,
    to: Option<String>,
    ts: Option<usize>,
    data: Option<T>,
}

/// A message intended for the dispatcher.
enum Message<T> {
    Data(TaggedData<T>),
    ReceiverJoin(String, Arc<ReceiverInner<T>>),
    ReceiverLeave(String),
    SenderJoin(Option<String>, String),
    SenderLeave(Option<String>, String),
}

/// The sending half of a clocked synchronous channel.
/// This half can only be owned by one thread, but it can be cloned to send to other threads.
///
/// Sending on a clocked channel will deliver the given message to the appropriate receiver, but
/// also notify all other receivers about the timestamp assigned to the message. The sending will
/// never block on a receiver that is not the destination of the message.
///
/// Beware that dropping a clocked sender incurs control messages to the dispatcher, and that those
/// control messages may result in messages being sent to receivers. If the dispatch channel is not
/// sufficiently buffered, this means that dropping a `ClockedSender` before the corresponding
/// `ClockedReceiver` is receiving on its end of the channel may deadlock.
///
/// When the last `ClockedSender` is dropped for a target, and there are no `ClockedBroadcaster`s,
/// the dispatcher will automatically be notified, and the recipient will see a disconnected
/// channel error once it has read all buffered messages.
///
/// ```
/// use clocked_dispatch;
/// use std::thread;
///
/// let m = clocked_dispatch::new(10);
/// let (tx_a, rx_a) = m.new("atx", "arx");
///
/// let tx_a1 = tx_a.clone("atx1");
/// thread::spawn(move || {
///     tx_a1.send("a1");
/// });
///
/// let tx_a2 = tx_a.clone("atx2");
/// thread::spawn(move || {
///     tx_a2.send("a2");
/// });
///
/// drop(tx_a);
/// assert_eq!(rx_a.count(), 2);
/// ```
pub struct ClockedSender<T> {
    target: String,
    source: String,
    dispatcher: mpsc::SyncSender<Message<T>>,
}

impl<T> Drop for ClockedSender<T> {
    fn drop(&mut self) {
        self.dispatcher
            .send(Message::SenderLeave(Some(self.target.clone()), self.source.clone()))
            .unwrap();
    }
}

impl<T> ClockedSender<T> {
    /// Sends a value on this synchronous channel, and notifies all other recipients of the
    /// timestamp it is assigned by the dispatcher.
    ///
    /// This function will *block* until space in the internal buffer becomes available, or a
    /// receiver is available to hand off the message to.
    ///
    /// Note that a successful send does *not* guarantee that the receiver will ever see the data if
    /// there is a buffer on this channel. Items may be enqueued in the internal buffer for the
    /// receiver to receive at a later time. If the buffer size is 0, however, it can be guaranteed
    /// that the receiver has indeed received the data if this function returns success.
    pub fn send(&self, data: T) {
        // XXX: would be really neat if we could return the ts here, but that'll probably be tricky
        // TODO: This function will never panic, but it may return `Err` if the `Receiver` has
        // disconnected and is no longer able to receive information.
        self.dispatcher
            .send(Message::Data(TaggedData {
                from: self.source.clone(),
                to: Some(self.target.clone()),
                ts: None,
                data: Some(data),
            }))
            .unwrap()
    }

    /// Sends an already-sequenced value to the associated receiver. The message may be buffered
    /// by the dispatcher until it can guarantee that no other sender will later try to send
    /// messages with a lower sequence number.
    ///
    /// It is optional to include data when forwarding. If no data is included, this message
    /// conveys to the dispatcher that this sender promises not to send later messages with a
    /// higher sequence number than the one given.
    pub fn forward(&self, data: Option<T>, ts: usize) {
        self.dispatcher
            .send(Message::Data(TaggedData {
                from: self.source.clone(),
                to: Some(self.target.clone()),
                ts: Some(ts),
                data: data,
            }))
            .unwrap()
    }

    /// Creates a new clocked sender for this sender's receiver.
    ///
    /// Clocked dispatch requires that all senders have a unique name so that the "up-to-date-ness"
    /// of the senders can be tracked reliably.
    pub fn clone<V: Into<String>>(&self, source: V) -> ClockedSender<T> {
        let source = source.into();
        self.dispatcher
            .send(Message::SenderJoin(Some(self.target.clone()), source.clone()))
            .unwrap();
        ClockedSender {
            source: source,
            target: self.target.clone(),
            dispatcher: self.dispatcher.clone(),
        }
    }
}

impl<T: Clone> ClockedSender<T> {
    /// Converts this sender into a broadcast sender.
    ///
    /// Doing so detaches the sender from its receiver, and means all future sends will be
    /// broadcast to all receivers. Note that the existence of a broadcaster prevents the closing
    /// of all channels.
    pub fn into_broadcaster(self) -> ClockedBroadcaster<T> {
        let dispatcher = self.dispatcher.clone();
        let source = format!("{}_bcast", self.source);
        dispatcher.send(Message::SenderJoin(None, source.clone())).unwrap();

        // NOTE: the drop of self causes a Message::SenderLeave to be sent for this sender
        ClockedBroadcaster {
            source: source,
            dispatcher: dispatcher,
        }
    }
}

/// A sending half of a clocked synchronous channel that only allows broadcast. This half can only
/// be owned by one thread, but it can be cloned to send to other threads. A `ClockedBroadcaster`
/// can be constructed from a `ClockedSender` using `ClockedSender::into_broadcaster`.
///
/// Sending on a clocked channel will deliver the given message to the appropriate receiver, but
/// also notify all other receivers about the timestamp assigned to the message. The sending will
/// never block on a receiver that is not the destination of the message.
///
/// Beware that dropping a clocked sender incurs control messages to the dispatcher, and that those
/// control messages may result in messages being sent to receivers. If the dispatch channel is not
/// sufficiently buffered, this means that dropping a `ClockedSender` before the corresponding
/// `ClockedReceiver` is receiving on its end of the channel may deadlock.
///
/// Note that the existence of a `ClockedBroadcater` prevents the closing of any clocked channels
/// managed by this dispatcher.
///
/// # Examples
///
/// Regular broadcast:
///
/// ```
/// use clocked_dispatch;
/// use std::sync::mpsc;
///
/// let m = clocked_dispatch::new(10);
/// let (tx_a, rx_a) = m.new("atx", "arx");
/// let tx = tx_a.into_broadcaster();
/// // note that the A channel is still open since there now exists a broadcaster,
/// // even though all A senders have been dropped.
///
/// let (tx_b, rx_b) = m.new("btx", "brx");
///
/// tx.broadcast("1");
///
/// let x = rx_a.recv().unwrap();
/// assert_eq!(x.0, Some("1"));
/// assert_eq!(rx_b.recv(), Ok(x));
///
/// // non-broadcasts still work
/// tx_b.send("2");
/// let x = rx_b.recv().unwrap();
/// assert_eq!(x.0, Some("2"));
/// assert_eq!(rx_a.recv(), Ok((None, x.1)));
///
/// // drop broadcaster
/// drop(tx);
///
/// // A is now closed because there are no more senders
/// assert_eq!(rx_a.recv(), Err(mpsc::RecvError));
///
/// // rx_b is *not* closed because tx_b still exists
/// assert_eq!(rx_b.try_recv(), Err(mpsc::TryRecvError::Empty));
///
/// drop(tx_b);
/// // rx_b is now closed because its senders have all gone away
/// assert_eq!(rx_b.recv(), Err(mpsc::RecvError));
/// ```
///
/// Forwarding broadcast:
///
/// ```
/// use clocked_dispatch;
/// use std::sync::mpsc;
///
/// let m = clocked_dispatch::new(10);
/// let (tx_a, rx_a) = m.new("atx", "arx");
/// let (tx_b, rx_b) = m.new("btx", "brx");
/// let (tx_c, rx_c) = m.new("ctx", "crx");
///
/// let tx = tx_a.into_broadcaster();
/// tx.broadcast_forward(Some("1"), 1);
///
/// assert_eq!(rx_a.recv().unwrap(), (Some("1"), 1));
/// assert_eq!(rx_b.recv().unwrap(), (Some("1"), 1));
/// assert_eq!(rx_c.recv().unwrap(), (Some("1"), 1));
///
/// // non-broadcasts still work
/// tx_c.forward(Some("c"), 2);
/// assert_eq!(rx_a.recv().unwrap(), (None, 2));
/// assert_eq!(rx_b.recv().unwrap(), (None, 2));
/// assert_eq!(rx_c.recv().unwrap(), (Some("c"), 2));
/// ```
pub struct ClockedBroadcaster<T: Clone> {
    source: String,
    dispatcher: mpsc::SyncSender<Message<T>>,
}

impl<T: Clone> Drop for ClockedBroadcaster<T> {
    fn drop(&mut self) {
        self.dispatcher.send(Message::SenderLeave(None, self.source.clone())).unwrap();
    }
}

impl<T: Clone> ClockedBroadcaster<T> {
    /// Sends a value to all receivers known to this dispatcher. The value will be assigned a
    /// sequence number by the dispatcher.
    ///
    /// This function will *block* until space in the internal buffer becomes available, or a
    /// receiver is available to hand off the message to.
    ///
    /// Note that a successful send does *not* guarantee that the receiver will ever see the data if
    /// there is a buffer on this channel. Items may be enqueued in the internal buffer for the
    /// receiver to receive at a later time. If the buffer size is 0, however, it can be guaranteed
    /// that the receiver has indeed received the data if this function returns success.
    pub fn broadcast(&self, data: T) {
        self.dispatcher
            .send(Message::Data(TaggedData {
                from: self.source.clone(),
                to: None,
                ts: None,
                data: Some(data),
            }))
            .unwrap()
    }

    /// Sends an already-sequenced value to all receivers known to this dispatcher. The message may
    /// be buffered by the dispatcher until it can guarantee that no other sender will later try to
    /// send messages with a lower sequence number.
    ///
    /// This function will *block* until space in the internal buffer becomes available, or a
    /// receiver is available to hand off the message to.
    ///
    /// Note that a successful send does *not* guarantee that the receiver will ever see the data if
    /// there is a buffer on this channel. Items may be enqueued in the internal buffer for the
    /// receiver to receive at a later time. If the buffer size is 0, however, it can be guaranteed
    /// that the receiver has indeed received the data if this function returns success.
    ///
    /// It is optional to include data when forwarding. If no data is included, this message
    /// conveys to the dispatcher that this sender promises not to send later messages with a
    /// higher sequence number than the one given.
    pub fn broadcast_forward(&self, data: Option<T>, ts: usize) {
        self.dispatcher
            .send(Message::Data(TaggedData {
                from: self.source.clone(),
                to: None,
                ts: Some(ts),
                data: data,
            }))
            .unwrap()
    }

    /// Creates a new clocked broadcast sender.
    ///
    /// Clocked dispatch requires that all senders have a unique name so that the "up-to-date-ness"
    /// of the senders can be tracked reliably.
    pub fn clone<V: Into<String>>(&self, source: V) -> ClockedBroadcaster<T> {
        let source = source.into();
        self.dispatcher.send(Message::SenderJoin(None, source.clone())).unwrap();
        ClockedBroadcaster {
            source: source,
            dispatcher: self.dispatcher.clone(),
        }
    }
}

struct QueueState<T> {
    queue: VecDeque<(T, usize)>,
    ts_head: usize,
    ts_tail: usize,
    closed: bool,
    left: bool,
}

struct ReceiverInner<T> {
    mx: Mutex<QueueState<T>>,
    cond: Condvar,
}

/// The receiving half of a clocked synchronous channel.
///
/// A clocked receiver will receive all messages sent by one of its associated senders. It will
/// also receive notifications whenever a message with a higher timestamp than any it has seen has
/// been sent to another receiver under the same dispatcher.
///
/// Dropping it will unblock any senders trying to send to this receiver.
pub struct ClockedReceiver<T: Send + 'static> {
    leave: mpsc::SyncSender<String>,
    inner: Arc<ReceiverInner<T>>,
    name: String,
}

impl<T: Send + 'static> ClockedReceiver<T> {
    fn new<V: Into<String>>(name: V,
                            leave: mpsc::SyncSender<String>,
                            bound: usize)
                            -> ClockedReceiver<T> {
        ClockedReceiver {
            leave: leave,
            inner: Arc::new(ReceiverInner {
                mx: Mutex::new(QueueState {
                    queue: VecDeque::with_capacity(bound),
                    ts_head: 0,
                    ts_tail: 0,
                    closed: false,
                    left: false,
                }),
                cond: Condvar::new(),
            }),
            name: name.into(),
        }
    }
}

impl<T: Send + 'static> Iterator for ClockedReceiver<T> {
    type Item = (Option<T>, usize);
    fn next(&mut self) -> Option<Self::Item> {
        self.recv().ok()
    }
}

impl<T: Send + 'static> Drop for ClockedReceiver<T> {
    fn drop(&mut self) {
        use std::mem;

        let name = mem::replace(&mut self.name, String::new());
        self.leave.send(name).unwrap();
        // wait until we've actually been dropped
        self.count();
    }
}

impl<T: Send + 'static> ClockedReceiver<T> {
    /// Attempts to wait for a value on this receiver, returning an error if the corresponding
    /// channel has hung up.
    ///
    /// This function will always block the current thread if there is no data available, the
    /// receiver has seen the latest timestamp handled by the dispatcher, and it's possible for
    /// more data to be sent. Once a message is sent to a corresponding `ClockedSender`, then this
    /// receiver will wake up and return that message. If a message is sent by a `ClockedSender`
    /// connected to a different receiver under the same dispatcher, this receiver will wake up and
    /// receive the timestamp assigned to that message.
    ///
    /// If all corresponding `ClockedSender` have disconnected, or disconnect while this call is
    /// blocking, this call will wake up and return `Err` to indicate that no more messages can
    /// ever be received on this channel. However, since channels are buffered, messages sent
    /// before the disconnect will still be properly received.
    pub fn recv(&self) -> Result<(Option<T>, usize), mpsc::RecvError> {
        let mut state = self.inner.mx.lock().unwrap();
        while state.ts_head == state.ts_tail && state.queue.is_empty() && !state.closed {
            // NOTE: is is *not* sufficient to use head == tail as an indicator that there are no
            // messages. specifically, if there are duplicates for a given timestamp, the equality
            // may work out while there are still elements in the queue.
            state = self.inner.cond.wait(state).unwrap();
        }

        // if there's something at the head of the queue, return it
        if let Some((t, ts)) = state.queue.pop_front() {
            state.ts_head = ts;
            self.inner.cond.notify_one();
            return Ok((Some(t), ts));
        }

        if state.ts_head == state.ts_tail {
            // we must be closed
            assert_eq!(state.closed, true);
            return Err(mpsc::RecvError);
        }

        // otherwise, notify about the newest available timestamp
        state.ts_head = state.ts_tail;
        self.inner.cond.notify_one();
        Ok((None, state.ts_head))
    }

    /// Attempts to return a pending value on this receiver without blocking
    ///
    /// This method will never block the caller in order to wait for data to become available.
    /// Instead, this will always return immediately with a possible option of pending data on the
    /// channel.
    ///
    /// This is useful for a flavor of "optimistic check" before deciding to block on a receiver.
    pub fn try_recv(&self) -> Result<(Option<T>, usize), mpsc::TryRecvError> {
        let mut state = self.inner.mx.lock().unwrap();
        if state.ts_head == state.ts_tail && !state.closed {
            // we have observed all timestamps, so the queue must be empty
            return Err(mpsc::TryRecvError::Empty);
        }

        if state.ts_head == state.ts_tail {
            // we must be closed
            assert_eq!(state.closed, true);
            return Err(mpsc::TryRecvError::Disconnected);
        }

        // if there's something at the head of the queue, return it
        if let Some((t, ts)) = state.queue.pop_front() {
            state.ts_head = ts;
            self.inner.cond.notify_one();
            return Ok((Some(t), ts));
        }

        // otherwise, notify about the newest available timestamp
        state.ts_head = state.ts_tail;
        self.inner.cond.notify_one();
        Ok((None, state.ts_head))
    }
}

/// Dispatch coordinator for adding additional clocked channels.
pub struct Dispatcher<T: Send> {
    dispatcher: mpsc::SyncSender<Message<T>>,
    leave: mpsc::SyncSender<String>,
    bound: usize,
}

impl<T: Send> Dispatcher<T> {
    /// Creates a new named, synchronous, bounded, clocked channel managed by this dispatcher.
    ///
    /// The given receiver and sender names *must* be unique for this dispatch.
    ///
    /// The `ClockedReceiver` will block until a message or a new timestamp becomes available.
    ///
    /// The receiver's incoming channel has an internal buffer on which messages will be queued.
    /// Its size is inherited from the dispatch bound. When this buffer becomes full, future
    /// messages from the dispatcher will block waiting for the buffer to open up. Note that a
    /// buffer size of 0 is valid, but its behavior differs from that of synchronous Rust channels.
    /// Because the dispatcher sits between the sender and the receiver, a bound of 0 will not
    /// guarantee a "rendezvous" between the sender and the receiver, but rather between the sender
    /// and the dispatcher (and subsequently, the dispatcher and the receiver).
    pub fn new<S1: Into<String>, S2: Into<String>>(&self,
                                                   sender: S1,
                                                   receiver: S2)
                                                   -> (ClockedSender<T>, ClockedReceiver<T>) {
        let source = sender.into();
        let target = receiver.into();
        let send = ClockedSender {
            source: source.clone(),
            target: target.clone(),
            dispatcher: self.dispatcher.clone(),
        };
        let recv = ClockedReceiver::new(target.clone(), self.leave.clone(), self.bound);

        self.dispatcher.send(Message::ReceiverJoin(target.clone(), recv.inner.clone())).unwrap();
        self.dispatcher.send(Message::SenderJoin(Some(target.clone()), source)).unwrap();
        (send, recv)
    }
}

/// `Delayed` is used to keep track of messages that cannot yet be safely delivered because it
/// would violate the in-order guarantees.
///
/// `Delayed` structs are ordered by their timestamp such that the *lowest* is the "highest". This
/// is so that `Delayed` can easily be used in a `BinaryHeap`.
struct Delayed<T> {
    ts: usize,
    data: T,
}

impl<T> PartialEq for Delayed<T> {
    fn eq(&self, other: &Delayed<T>) -> bool {
        other.ts == self.ts
    }
}

impl<T> PartialOrd for Delayed<T> {
    fn partial_cmp(&self, other: &Delayed<T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Eq for Delayed<T> {}

impl<T> Ord for Delayed<T> {
    fn cmp(&self, other: &Delayed<T>) -> Ordering {
        other.ts.cmp(&self.ts)
    }
}

struct Target<T> {
    // the receiver's channel
    channel: Arc<ReceiverInner<T>>,
    // messages for this receiver that have high timestamps, and must be delayed
    // the mutex is so that we can allow the control thread to have an &Target without T: Sync
    delayed: sync::Mutex<BinaryHeap<Delayed<T>>>,
    // known senders for this receiver
    senders: HashSet<String>,
}

// TODO:
// It seems like dispatchers are always used in one of the following ways:
//
//  - Multi-in, multi-out, unicast, assigning timestamps, no buffering
//  - Multi-in, single-out, unicast, forwarding, buffering
//  - Single-in, multi-out, broadcast, forwarding, no buffering
//
// We could specialize for each of these, which might increase performance and further modularize
// the code. This would also allow restricting the API such that you can't start using one kind of
// dispatcher in another mode. Another potentially good example of this is forcing T: Clone only
// for broadcast dispatchers.
struct DispatchInner<T> {
    // per-receiver information
    // needs to be locked so that control thread can access ReceiverInner Arcs
    targets: sync::Arc<sync::RwLock<HashMap<String, Target<T>>>>,
    // essentially targets.keys()
    // kept separate so we can mutably use targets while iterating over all receiver names
    destinations: HashSet<String>,
    // known broadcasters
    broadcasters: HashSet<String>,
    // broadcast messages that have high timestamps, and must be delayed
    bdelay: BinaryHeap<Delayed<T>>,
    // whether we are operating in forwarding or serializing mode
    // in the former, the senders assign timestamps
    // in the latter, we assign the timestamps
    // the first message we receive dictate the mode
    forwarding: Option<bool>,
    // queue bound
    bound: usize,
    id: String,
    // Sequence number counter.
    // If we are in forwarding mode this is the highest consecutive sequence number we have
    // received. If we are in serializing mode, this is the last sequence number we have assigned.
    counter: usize,
}

impl<T: Clone> DispatchInner<T> {
    /// Notifies all receivers of the given timestamp, and sends any given data to the intended
    /// recipients.
    ///
    /// If `data == None`, `ts` is sent all receivers.
    /// If `to == None`, `data.unwrap()` is sent to all receivers.
    /// If `to == Some(t)`, `data.unwrap()` is sent to the the receiver named `t`.
    fn notify(&self, to: Option<&String>, ts: usize, data: Option<T>) {
        let tgts = self.targets.read().unwrap();
        for (tn, t) in tgts.iter() {
            let mut state = t.channel.mx.lock().unwrap();
            debug!("{}: notifying {} about {}", self.id, tn, ts);
            if data.is_some() && (to.is_none() || to.unwrap() == tn.as_str()) {
                debug!("{}: including data", self.id);
                while state.queue.len() == self.bound && !state.left {
                    state = t.channel.cond.wait(state).unwrap();
                }

                if state.left {
                    t.channel.cond.notify_one();
                    continue;
                }

                // TODO: avoid clone() for the last send
                state.queue.push_back((data.clone().unwrap(), ts));
            }
            state.ts_tail = ts;
            t.channel.cond.notify_one();
            drop(state);
        }

        // if data.is_some() && to.is_some() && !self.targets.contains_key(to.unwrap().as_str())
        // this seems like a bad case, but it could just be that the receiver has left
        // TODO: would be nice if we had some way of notifying the sender that this is the case
    }

    /// Find any delayed messages that are now earlier than the minimum sender sequence number, and
    /// send them in-order. Will check both broadcast messages and messages to a given sender if
    /// `to.is_some()`.
    fn process_delayed(&mut self) {
        assert!(self.forwarding.unwrap_or(false));
        debug!("{}: processing delayed after {}", self.id, self.counter);

        // keep looking for a candidate to send
        loop {
            // we need to find the message in `[bdelay + targets[to].delayed]` with the lowest
            // timestamp. we do this by:
            //
            // 1. finding the smallest in `bdelay`
            let next = self.bdelay.peek().map(|d| d.ts);
            debug!("{}: next from bcast is {:?}", self.id, next);
            // 2. finding the smallest in `targets[*].delayed`
            let tnext = {
                let tgts = self.targets.read().unwrap();
                let t = self.destinations
                    .iter()
                    .map(|to| {
                        let t = &tgts[to];
                        (to,
                         t.delayed
                            .lock()
                            .unwrap()
                            .peek()
                            .map(|d| d.ts))
                    })
                    .filter_map(|(to, ts)| ts.map(move |ts| (to, ts)))
                    .min_by_key(|&(_, ts)| ts);
                t.map(|(to, ts)| (to.to_owned(), ts))
            };

            debug!("{}: next from tdelay is {:?}", self.id, tnext);

            // 3. using the message from 2 if it is the next message
            if let Some((to, tnext)) = tnext {
                if tnext == self.counter + 1 {
                    debug!("{}: forwarding from tdelay", self.id);
                    let d = {
                        let tgts = self.targets.read().unwrap();
                        let mut x = tgts[to.as_str()].delayed.lock().unwrap();
                        x.pop().unwrap()
                    };
                    self.notify(Some(&to), d.ts, Some(d.data));
                    self.counter += 1;
                    continue;
                }
            }

            // 4. using the message from 1 if it is the next message
            if let Some(ts) = next {
                if ts == self.counter + 1 {
                    debug!("{}: forwarding from bdelay", self.id);
                    let d = self.bdelay.pop().unwrap();
                    self.notify(None, d.ts, Some(d.data));
                    self.counter += 1;
                    continue;
                }
            }

            // no delayed message has a sequence number <= min
            break;
        }

        debug!("{}: done replaying", self.id);
    }

    /// Takes a message from any sender, handles control messages, and delays or delivers data
    /// messages.
    ///
    /// The first data message sets which mode the dispatcher operates in. If the first message has
    /// a sequence number, the dispatcher will operate in forwarding mode. If it does not, it will
    /// operate in assignment mode. In the former, it expects every data message to be numbered,
    /// and delays too-new messages until all inputs are at least that up-to-date. In the latter,
    /// it will deliver all messages immediately, and will assign sequence numbers to each one.
    fn absorb(&mut self, m: Message<T>) {
        match m {
            Message::Data(td) => {
                debug!("{}: got message with ts {:?} from {} for {:?}",
                       self.id,
                       td.ts,
                       td.from,
                       td.to);
                if self.forwarding.is_some() {
                    assert!(self.forwarding.unwrap() == td.ts.is_some(),
                            "one sender sent timestamp, another did not");
                } else {
                    self.forwarding = Some(td.ts.is_some())
                }

                if let Some(ts) = td.ts {
                    // if we are forwarding (which must be the case here), this message may be the
                    // next to be sent out. in that case we should increase the sequence number
                    // tracker so that any later messages will also be released
                    assert!(ts >= self.counter);
                    if ts == self.counter + 1 {
                        self.counter = ts;
                    }
                }

                if td.ts.is_none() {
                    // the sender leaves it up to us to pick timestamps, so we know we're always up
                    // to date. note that this latter case assumes that the senders will *never*
                    // give us timestamps once they have let us pick once.
                    self.counter += 1;
                    self.notify(td.to.as_ref(), self.counter, td.data);
                    return;
                }

                // we're in forwarding mode
                let ts = td.ts.unwrap();
                if ts == self.counter {
                    // this messages is the next to be sent out, so we can send it immediately
                    self.notify(td.to.as_ref(), ts, td.data);
                    // since this messages must also have incremented the counter above, there may
                    // be other messages that can now be sent out.
                    self.process_delayed();
                    return;
                }

                // need to buffer this message until the other views are sufficiently up-to-date.
                if let Some(data) = td.data {
                    if let Some(ref to) = td.to {
                        debug!("{}: delayed in {:?}", self.id, to);
                        let tgts = self.targets.read().unwrap();
                        tgts[to].delayed.lock().unwrap().push(Delayed {
                            ts: ts,
                            data: data,
                        });
                        drop(tgts);
                    } else {
                        debug!("{}: delayed in bcast", self.id);
                        self.bdelay.push(Delayed {
                            ts: ts,
                            data: data,
                        });
                    }
                }
            }
            Message::ReceiverJoin(name, inner) => {
                debug!("{}: receiver {} joined", self.id, name);
                if !self.destinations.insert(name.clone()) {
                    panic!("receiver {} already exists!", name);
                }

                let mut tgts = self.targets.write().unwrap();
                tgts.insert(name,
                            Target {
                                channel: inner,
                                senders: HashSet::new(),
                                delayed: sync::Mutex::new(BinaryHeap::new()),
                            });
            }
            Message::ReceiverLeave(name) => {
                debug!("{}: receiver {} left", self.id, name);
                // NOTE: Control thread has already unblocked senders and set .left

                // Deregister the receiver
                let mut tgts = self.targets.write().unwrap();
                tgts.remove(&*name);
                self.destinations.remove(&*name);

                // TODO: ensure that subsequent send()'s return an error (somehow?) instead of just
                // crashing and burning (panic) like what happens now.
            }
            Message::SenderJoin(target, source) => {
                debug!("{}: sender {} for {:?} joined", self.id, source, target);

                if let Some(target) = target {
                    let mut tgts = self.targets.write().unwrap();
                    tgts.get_mut(&*target).unwrap().senders.insert(source);
                } else {
                    self.broadcasters.insert(source);
                }
            }
            Message::SenderLeave(target, source) => {
                debug!("{}: sender {} for {:?} left", self.id, source, target);
                if let Some(ref target) = target {
                    // NOTE: target may not exist because receiver has left
                    let mut tgts = self.targets.write().unwrap();
                    if let Some(target) = tgts.get_mut(target.as_str()) {
                        target.senders.remove(&*source);
                    }
                    drop(tgts);
                } else {
                    self.broadcasters.remove(&*source);
                }

                if self.broadcasters.is_empty() {
                    // if there are broadcasters, no channel is closed
                    let mut tgts = self.targets.write().unwrap();
                    for (tn, t) in tgts.iter_mut()
                        .filter(|&(_, ref t)| {
                            t.senders.is_empty() && t.delayed.lock().unwrap().is_empty()
                        }) {
                        debug!("{}: closing now-done channel {}", self.id, tn);
                        // having no senders when there are no broadcasters means the channel is closed
                        let mut state = t.channel.mx.lock().unwrap();
                        state.closed = true;
                        t.channel.cond.notify_one();
                        drop(state);
                    }
                }
            }
        }
    }
}

/// Creates a new clocked dispatch. Dispatch channels can be constructed by calling `new` on the
/// returned dispatcher.
///
/// The dispatcher has an internal buffer for incoming messages. When this buffer becomes full,
/// future sends to the dispatcher will block waiting for the buffer to open up. Note that a buffer
/// size of 0 is valid, but its behavior differs from that of synchronous Rust channels. Because
/// the dispatcher sits between the sender and the receiver, a bound of 0 will not guarantee a
/// "rendezvous" between the sender and the receiver, but rather between the sender and the
/// dispatcher (and subsequently, the dispatcher and the receiver).
///
/// Be aware that a bound of 0 means that it is not safe to drop a `ClockedSender` before the
/// corresponding `ClockedReceiver` is reading from its end of the channel.
pub fn new<T: Clone + Send + 'static>(bound: usize) -> Dispatcher<T> {
    new_with_seed(bound, 0)
}

/// Creates a new clocked dispatch whose automatically assigned sequence numbers start at a given
/// value.
///
/// This method is useful for programs that wish to maintain monotonic sequence numbers between
/// multiple executions of the application. Such an application should track received sequence
/// numbers, store the latest one upon exiting, and then use this method to resume the sequence
/// numbers from that point onward upon resuming.
pub fn new_with_seed<T: Clone + Send + 'static>(bound: usize, seed: usize) -> Dispatcher<T> {
    use rand::{thread_rng, Rng};

    let (stx, srx) = mpsc::sync_channel(bound);
    let mut d = DispatchInner {
        targets: sync::Arc::new(sync::RwLock::new(HashMap::new())),
        destinations: HashSet::new(),
        bdelay: BinaryHeap::new(),
        broadcasters: HashSet::new(),
        forwarding: None,
        bound: bound,
        id: thread_rng().gen_ascii_chars().take(2).collect(),
        counter: seed,
    };

    let id = d.id.clone();
    let c_targets = d.targets.clone();
    let c_stx = stx.clone();
    let (ctx, crx) = mpsc::sync_channel::<String>(0);
    thread::spawn(move || {
        // this thread handles leaving receivers.
        // it is *basically* the following loop:
        //
        // ```
        // for left in crx {
        //   c_targets[left].channel.left = true;
        //   ctx.send(ReceiverLeave(left));
        // }
        // ```
        //
        // unfortunately, it gets complicated by two factors:
        //
        //  - if a receiver is created and then dropped immediately, the Leave could reach us
        //    before the Join reaches the dispatcher. in this case, targets[left] doesn't exist
        //    yet. we thus need to wait for the dispatcher to catch up to the join.
        //
        //  - the dispatcher can't be blocking on a send to the receiver we are dropping because
        //    it doesn't know about it yet, and thus must process the join message before it can
        //    block waiting on us). however, there *is* a possibility of the dispatcher being
        //    blocked on a send to a channel that is queued to be dropped *behind* this one. this
        //    is the source of much of the complexity below.
        //
        // essentially, we keep track of leaving receivers that we haven't successfully handled
        // yet, but also keep reading from crx to see if there are other receivers that are also
        // trying to leave.

        // receivers that are trying to leave
        let mut leaving = Vec::new();
        // temp for keeping track of nodes are *still* trying to leave while draining `leaving`
        let mut leaving_ = Vec::new();

        'recv: loop {
            // are there more receivers trying to leave?
            let left = crx.try_recv();
            match left {
                Ok(left) => {
                    // yes -- deal with them too
                    leaving.push(left);
                }
                Err(..) if !leaving.is_empty() => {
                    // no, but deal with the receivers that wanted to leave
                }
                Err(mpsc::TryRecvError::Disconnected) => {
                    // no, and there will never be more
                    // we must also have dealt with all receivers who tried to leave
                    // it's safe for us to exit
                    break 'recv;
                }
                Err(mpsc::TryRecvError::Empty) => {
                    // no, and there also aren't any for us to retry
                    // to avoid busy looping, we can now do a blocking receive
                    let left = crx.recv();
                    if let Ok(left) = left {
                        // someone tried to leave -- let's try to deal with that
                        leaving.push(left);
                    } else {
                        // channel closed, and no one is waiting -- safe to exit
                        break 'recv;
                    }
                }
            }

            // try to process any receivers trying to leave
            for left in leaving.drain(..) {
                debug!("{} control: dealing with departure of receiver {}",
                       id,
                       left);

                let targets = c_targets.read().unwrap();
                if let Some(t) = targets.get(&*left) {
                    // the receiver exists, so we can remove it
                    let mut state = t.channel.mx.lock().unwrap();
                    state.left = true;
                    state.closed = true;
                    t.channel.cond.notify_one();
                    drop(state);

                    // kick off a message to the dispatcher in the background.
                    // we don't want it to be in the foreground, because we may have other things
                    // to close that could block sending to the dispatcher.
                    let ctx = c_stx.clone();
                    thread::spawn(move || {
                        ctx.send(Message::ReceiverLeave(left)).unwrap();
                    });
                } else {
                    // dispatcher doesn't know about this receiver yet
                    leaving_.push(left);
                }
            }
            leaving.extend(leaving_.drain(..));
        }
    });

    thread::spawn(move || {
        for m in srx.iter() {
            d.absorb(m);
        }
    });

    Dispatcher {
        dispatcher: stx,
        leave: ctx,
        bound: bound,
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn can_send_after_recv_drop() {
        // Create a dispatcher
        let d = super::new(1);

        // Create two channels
        let (tx_a, rx_a) = d.new("atx", "arx");
        let (tx_b, rx_b) = d.new("btx", "brx");
        let _ = tx_a;

        // Drop a receiver
        drop(rx_a);

        // Ensure that sending doesn't block forever
        tx_b.send(10);

        // And that messages are still delivered
        assert_eq!(rx_b.recv().unwrap().0.unwrap(), 10);
    }

    #[test]
    fn recv_drop_unblocks_sender() {
        use std::thread;
        use std::time::Duration;

        // Create a dispatcher
        let d = super::new(1);

        // Create two channels
        let (tx_a, rx_a) = d.new("atx", "arx");
        let (tx_b, rx_b) = d.new("btx", "brx");

        // Make tx_a a broadcaster (so it would block on b)
        // Note that we have to do this *before* we saturate the channel to the dispatcher
        let tx_a = tx_a.into_broadcaster();

        // Fill rx_b
        thread::spawn(move || {
            for _ in 0..20 {
                tx_b.send("b");
            }
        });
        thread::sleep(Duration::from_millis(200));

        // Drop b's receiver
        drop(rx_b);

        // All of tx_b's sends should be dropped, and tx_a should be able to send
        tx_a.broadcast("a");

        // And that messages are still delivered
        loop {
            let rx = rx_a.recv();
            assert!(rx.is_ok());
            let rx = rx.unwrap();
            if rx.0.is_some() {
                assert_eq!(rx.0, Some("a"));
                break;
            }
        }
    }

    #[test]
    fn can_forward_after_recv_drop() {
        // Create a dispatcher
        let d = super::new(1);

        // Create two channels
        let (tx_a, rx_a) = d.new("atx", "arx");
        let (tx_b, rx_b) = d.new("btx", "brx");
        let _ = tx_a;

        // Drop a receiver
        drop(rx_a);

        // Ensure that forwarding doesn't block forever
        tx_b.forward(Some(10), 1);
        // note that dropping the receiver kills the senders too!

        // And that messages are still delivered
        assert_eq!(rx_b.recv(), Ok((Some(10), 1)));
    }

    #[test]
    fn forward_with_no_senders() {
        use std::sync::mpsc;

        let d = super::new(1);
        let (tx_a, rx_a) = d.new("atx", "arx");
        let (tx_b, rx_b) = d.new("btx", "brx");

        tx_a.forward(Some(1), 1);
        // the message is queued because tx_b hasn't sent anything

        // drop both senders, freeing Some(1) from the delayed queue. we specifically want to
        // explore the case where Some(1) is freed when there are no senders, so we have to drop
        // tx_a first (since tx_b is holding up the system).
        drop(tx_a);
        drop(tx_b);

        // Ensure that receiver still gets notified of messages
        assert_eq!(rx_a.recv(), Ok((Some(1), 1)));

        // And that other still gets a None
        assert_eq!(rx_b.recv(), Ok((None, 1)));

        // And that no more entries are sent
        assert_eq!(rx_a.recv(), Err(mpsc::RecvError));
        assert_eq!(rx_b.recv(), Err(mpsc::RecvError));
    }

    #[test]
    fn broadcast_dupe_termination() {
        use std::sync::mpsc;

        let d = super::new(1);
        let (tx, rx) = d.new("tx", "rx");
        let tx = tx.into_broadcaster();

        tx.broadcast_forward(Some("a"), 1);
        tx.broadcast_forward(Some("b"), 2);
        drop(tx);

        assert_eq!(rx.recv(), Ok((Some("a"), 1)));
        assert_eq!(rx.recv(), Ok((Some("b"), 2)));
        assert_eq!(rx.recv(), Err(mpsc::RecvError));
    }

    #[test]
    fn multisend_thread_interleaving() {
        use std::thread;

        for _ in 0..1000 {
            let d = super::new(20);
            let (tx_a, rx) = d.new("tx_a", "rx");
            let tx_b = tx_a.clone("tx_b");

            let t_a = thread::spawn(move || {
                tx_a.forward(Some("c_1"), 1);
                tx_a.forward(Some("c_3"), 3);
                tx_a.forward(Some("a_1"), 5);
            });
            let t_b = thread::spawn(move || {
                tx_b.forward(Some("c_2"), 2);
                tx_b.forward(Some("b_1"), 4);
                tx_b.forward(Some("a_2"), 6);
            });

            assert_eq!(rx.recv(), Ok((Some("c_1"), 1)));
            assert_eq!(rx.recv(), Ok((Some("c_2"), 2)));
            assert_eq!(rx.recv(), Ok((Some("c_3"), 3)));
            assert_eq!(rx.recv(), Ok((Some("b_1"), 4)));
            assert_eq!(rx.recv(), Ok((Some("a_1"), 5)));
            assert_eq!(rx.recv(), Ok((Some("a_2"), 6)));

            t_a.join().unwrap();
            t_b.join().unwrap();
        }
    }

    #[test]
    fn test_new_with_seed() {
        let d = super::new_with_seed(1, 69105);
        let (tx, rx) = d.new("tx", "rx");
        tx.send("a");
        assert_eq!(rx.recv(), Ok((Some("a"), 69106)));
    }
}