1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
use super::{annotation::Annotation, clade::Clade, kmers_map::KmersMap};
use mycelium_base::utils::errors::MappedErrors;
use phylotree::tree::Tree as PhyloTree;
use serde::{Deserialize, Serialize};
use std::{ffi::OsStr, fs::read_to_string, mem::size_of_val, path::Path};
use uuid::Uuid;
#[derive(Debug, Serialize, Deserialize)]
#[serde(rename_all = "camelCase")]
pub struct Tree {
/// The unique identifier for the tree.
///
/// The id is a unique identifier for the tree. The id is a Universally
/// Unique Identifier (UUID) that is generated when the tree is created.
pub id: Uuid,
/// The human-readable name for the tree.
///
/// When the tree is created using the from_file function, the name is set
/// from the file name where the tree is parsed from.
pub name: String,
/// The minimum branch support value.
///
/// The minimum branch support value is the minimum support value for a
/// branch to be included in the tree. Branches with support values below
/// this value are removed from the tree and children are reconnected to the
/// parent node.
pub min_branch_support: f64,
/// The in-memory size of the tree (in Mb).
///
/// This is usual to predict the memory usage of the tree index.
in_memory_size: Option<String>,
/// The root Clade of the tree.
///
/// The root is the root Clade of the tree. The root Clade is the starting
/// point of the tree and contains the children nodes.
pub root: Clade,
/// The annotations associated with the tree.
///
/// The annotations are the taxonomic annotations associated with nodes in
/// the tree. The annotations are stored as a vector of Annotation objects.
#[serde(skip_serializing_if = "Option::is_none")]
pub annotations: Option<Vec<Annotation>>,
//#[serde(skip_serializing_if = "Option::is_none")]
pub kmers_map: Option<KmersMap>,
}
impl Tree {
/// Create a new Tree object.
///
/// The function creates a new Tree object with an id, name, and root Clade.
/// The id is a unique identifier for the tree. The name is a human-readable
/// name for the tree. The root is the root Clade of the tree.
pub fn new(
id: Uuid,
name: String,
min_branch_support: f64,
root: Clade,
) -> Tree {
Tree {
id,
name,
min_branch_support,
in_memory_size: None,
root,
annotations: None,
kmers_map: None,
}
}
pub fn get_in_memory_size(&self) -> Option<String> {
self.in_memory_size.clone()
}
pub fn update_in_memory_size(&mut self) {
let id_size = size_of_val(&self.id);
let name_size = size_of_val(&self.name);
let root_size = size_of_val(&self.root);
let annotations_size = match &self.annotations {
Some(annotations) => size_of_val(annotations),
None => 0,
};
let kmers_map_size = match &self.kmers_map {
Some(kmers_map) => size_of_val(kmers_map),
None => 0,
};
self.in_memory_size = Some(format!(
"{:.6} Mb",
((id_size
+ name_size
+ root_size
+ annotations_size
+ kmers_map_size)
/ 1_000_000) as f64
));
}
/// Pretty print the tree.
///
/// The function prints the tree in a human-readable format. The function
/// prints the root node and recursively prints each child node.
pub fn pretty_print(&self) {
println!("R: {}", self.name);
for child in self.root.children.to_owned().unwrap() {
self.pretty_print_clade(&child, 0);
}
}
/// Pretty print a clade.
///
/// The function prints a clade in a human-readable format. The function
/// prints the clade id, name, and support value. If the clade is an
/// internal node, the function prints the children nodes recursively.
fn pretty_print_clade(&self, clade: &Clade, level: usize) {
let mut indent = String::new();
for _ in 0..level {
indent.push_str(" ");
}
let id = clade.id;
let name = clade.name.clone().unwrap_or("Unnamed".to_string());
let support = clade.support.unwrap_or(-1.0);
if clade.is_leaf() {
println!("{}L:{} {}", indent, id, name);
} else {
println!("{}I:{} ({})", indent, id, support);
}
if let Some(children) = clade.children.to_owned() {
for child in children {
self.pretty_print_clade(&child, level + 1);
}
}
}
pub fn from_yaml_file(file_path: &Path) -> Result<Tree, MappedErrors> {
let file_content =
read_to_string(file_path).expect("Could not read file");
let tree: Tree =
serde_yaml::from_str(&file_content).expect("Could not parse tree");
Ok(tree)
}
/// Create a new Tree from a .newick file.
///
/// The phylotre::tree::Tree is parsed from the file and converted to a Tree
/// object with a root Clade.
pub fn init_from_file(
tree_path: &Path,
min_branch_support: f64,
) -> Result<Tree, MappedErrors> {
assert!(
vec!["nwk", "newick", "tree"].contains(
&tree_path
.extension()
.and_then(OsStr::to_str)
.expect("Could not get extension")
),
"Tree file format is not supported"
);
let newick_content =
read_to_string(tree_path).expect("Could not read file");
let phylo_tree = PhyloTree::from_newick(&newick_content.as_str())
.expect("Could not parse tree");
let root_name = (if let Some(name) = tree_path.file_name() {
Some(
name.to_str()
.expect("Could not convert path to string")
.to_string(),
)
} else {
None
})
.unwrap_or("UnnamedTree".to_string());
if !phylo_tree.is_rooted().unwrap_or(false) {
panic!("Tree is not rooted");
}
let root_tree = match phylo_tree.get_root() {
Err(err) => panic!("Could not get root: {err}"),
Ok(root) => phylo_tree.get(&root).expect("Could not get root"),
};
if !root_tree.is_root() {
panic!("Root node is not a root");
}
let children = Self::get_children_nodes(&phylo_tree, &root_tree.id);
let sanitized_root =
Tree::sanitize(Clade::new_root(0.0, children), min_branch_support)?;
let mut new_tree = Tree::new(
Uuid::new_v3(&Uuid::NAMESPACE_DNS, &*root_name.as_bytes()),
root_name,
min_branch_support,
sanitized_root,
);
new_tree.root = Self::fix_parent_ids(&mut new_tree.root, None);
Ok(new_tree)
}
fn fix_parent_ids(clade: &mut Clade, parent: Option<u64>) -> Clade {
clade.children = if let Some(children) = clade.children.to_owned() {
let children = children
.into_iter()
.map(|mut child| {
child.parent = Some(clade.id);
Self::fix_parent_ids(&mut child, Some(clade.id))
})
.collect::<Vec<Clade>>();
Some(children)
} else {
None
};
clade.parent = parent;
clade.clone()
}
/// Remove low supported branches
///
/// The function removes low supported branches from the tree, reconnecting
/// children to the parent node.
fn sanitize(
clade: Clade,
min_branch_support: f64,
) -> Result<Clade, MappedErrors> {
let mut children = Vec::<Clade>::new();
if let Some(clade_children) = clade.to_owned().children {
for child in clade_children {
let sanitized_child =
Self::sanitize(child, min_branch_support)?;
if let Some(support) = sanitized_child.support {
if support >= min_branch_support
|| sanitized_child.is_leaf()
{
children.push(sanitized_child);
} else {
if let Some(grand_children) = sanitized_child.children {
for grand_child in grand_children {
children.push(grand_child);
}
}
}
} else {
children.push(sanitized_child);
}
}
}
let mut sanitized_clade = clade.clone();
sanitized_clade.children = match children.len() {
0 => None,
_ => Some(children),
};
Ok(sanitized_clade)
}
/// Recursively extract children nodes from a PhyloTree.
///
/// The function recursively extracts children nodes from a PhyloTree and
/// creates a Clade object for each node. The function returns a vector of
/// Clade objects.
fn get_children_nodes(
tree: &PhyloTree,
node_id: &usize,
) -> Option<Vec<Clade>> {
if let Ok(node) = tree.get(node_id) {
let mut children = Vec::<Clade>::new();
//
// Each child node is a single level below the parent node.
//
for child_id in node.children.to_owned() {
//
// Try to extract children node by node id.
//
let child_node =
tree.get(&child_id).expect("Child node not found");
//
// If the child node is a tip, create a new leaf Clade and
// insert into the children vector.
//
if child_node.is_tip() {
let leaf_node = Clade::new_leaf(
child_node.id.try_into().expect("Could not convert id"),
node_id.to_owned() as u64,
child_node
.name
.clone()
.unwrap_or("Unnamed".to_string()),
child_node.parent_edge,
);
children.push(leaf_node);
//
// Otherwise, try to extract children nodes from the child node,
// create a new internal Clade and insert into the children
// vector.
//
} else {
let nested_children =
Self::get_children_nodes(tree, &child_id);
if let Some(nested_children) = nested_children {
let internal_node = Clade::new_internal(
child_node
.id
.try_into()
.expect("Could not convert id"),
node_id.to_owned() as u64,
None,
match child_node.name.clone() {
Some(name) => match name.parse::<f64>() {
Err(_) => None,
Ok(value) => Some(value),
},
None => None,
},
child_node.parent_edge,
Some(nested_children),
);
children.push(internal_node);
} else {
return None;
}
}
}
return Some(children);
}
return None;
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::path::PathBuf;
#[test]
fn test_tree_from_file() {
let path = PathBuf::from("src/tests/data/colletotrichum-acutatom-complex/inputs/Colletotrichum_acutatum_gapdh-PhyML.nwk");
let tree = Tree::init_from_file(&path, 80.0);
assert!(tree.is_ok());
tree.unwrap().pretty_print();
}
}