1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
use crate::raw::{
    AllocError, AllocResult, Storage, StorageWithCapacity,
};

use core::{alloc::Layout, ptr::NonNull};
use std::{alloc::handle_alloc_error, mem::MaybeUninit};

use std::alloc::{Allocator, Global};

doc_heap! {
    #[repr(C)]
    #[cfg_attr(doc, doc(cfg(feature = "alloc")))]
    ///
    /// The allocator type paramter is only available on `nightly`
    pub struct Heap<T, A: Allocator = Global>(Box<[MaybeUninit<T>], A>);
}

unsafe impl<T, A: Allocator + Send> Send for Heap<T, A> {}
unsafe impl<T, A: Allocator + Sync> Sync for Heap<T, A> {}

enum OnFailure {
    Abort,
    Error,
}

impl<T> Heap<T> {
    /// Create a new zero-capacity heap vector
    pub fn new() -> Self { Self(Box::new_uninit_slice(0)) }

    /// Create a new `Heap<T>`storage from the given pointer and capacity
    ///
    /// # Safety
    ///
    /// If the capacity is non-zero
    /// * You must have allocated the pointer from the [`Global`] allocator
    /// * The pointer must be valid to read-write for the range `ptr..ptr.add(capacity)`
    pub unsafe fn from_raw_parts(ptr: NonNull<T>, capacity: usize) -> Self {
        unsafe { Self::from_raw_parts_in(ptr, capacity, Global) }
    }

    /// Convert a `Heap` storage into a pointer and capacity, without
    /// deallocating the storage
    pub fn into_raw_parts(self) -> (NonNull<T>, usize) {
        let ptr = Box::into_raw(self.0);
        unsafe {
            let (ptr, capacity) = ptr.to_raw_parts();
            (NonNull::new_unchecked(ptr.cast()), capacity)
        }
    }
}

#[cfg_attr(doc, doc(cfg(feature = "nightly")))]
impl<T, A: Allocator> Heap<T, A> {
    /// Create a new zero-capacity heap vector with the given allocator
    pub fn with_alloc(allocator: A) -> Self { Self(Box::new_uninit_slice_in(0, allocator)) }

    /// Create a new `Heap<T>`storage from the given pointer and capacity
    ///
    /// # Safety
    ///
    /// If the capacity is non-zero
    /// * You must have allocated the pointer from the given allocator
    /// * The pointer must be valid to read-write for the range `ptr..ptr.add(capacity)`
    pub unsafe fn from_raw_parts_in(ptr: NonNull<T>, capacity: usize, allocator: A) -> Self {
        unsafe {
            let ptr = std::ptr::slice_from_raw_parts_mut(ptr.as_ptr().cast(), capacity);
            Self(Box::from_raw_in(ptr, allocator))
        }
    }

    /// Convert a `Heap` storage into a pointer and capacity, without
    /// deallocating the storage
    pub fn into_raw_parts_with_alloc(self) -> (NonNull<T>, usize, A) {
        let (ptr, alloc) = Box::into_raw_with_allocator(self.0);
        unsafe {
            let (ptr, capacity) = ptr.to_raw_parts();
            (NonNull::new_unchecked(ptr.cast()), capacity, alloc)
        }
    }
}

impl<T, A: Allocator + Default> Default for Heap<T, A> {
    fn default() -> Self { Self::with_alloc(Default::default()) }
}

impl<T, A: Allocator> AsRef<[MaybeUninit<T>]> for Heap<T, A> {
    fn as_ref(&self) -> &[MaybeUninit<T>] { self.0.as_ref() }
}

impl<T, A: Allocator> AsMut<[MaybeUninit<T>]> for Heap<T, A> {
    fn as_mut(&mut self) -> &mut [MaybeUninit<T>] { self.0.as_mut() }
}

unsafe impl<T, A: Allocator> Storage for Heap<T, A> {
    type Item = T;

    fn reserve(&mut self, new_capacity: usize) {
        if self.0.len() < new_capacity {
            let _ = self.reserve_slow(new_capacity, OnFailure::Abort);
        }
    }

    fn try_reserve(&mut self, new_capacity: usize) -> AllocResult {
        if self.0.len() < new_capacity {
            self.reserve_slow(new_capacity, OnFailure::Error)
        } else {
            Ok(())
        }
    }
}

impl<T, A: Default + Allocator> Heap<T, A> {
    fn with_capacity(capacity: usize) -> Self { Self(Box::new_uninit_slice_in(capacity, A::default())) }
}

unsafe impl<T, A: Default + Allocator> StorageWithCapacity for Heap<T, A> {
    fn with_capacity(cap: usize) -> Self {
        Self::with_capacity(cap)
    }
}

impl<T, A: Allocator> Heap<T, A> {
    #[cold]
    #[inline(never)]
    fn reserve_slow(&mut self, new_capacity: usize, on_failure: OnFailure) -> AllocResult {
        assert!(new_capacity > self.0.len());

        // taking a copy of the box so we can get it's contents and then update it later
        // Safety:
        // we forget the box just as soon we we copy it, so we have no risk of double-free
        let (ptr, cap, alloc) = unsafe { Self::into_raw_parts_with_alloc(std::ptr::read(self)) };

        // grow by at least doubling
        let new_capacity = new_capacity
            .max(cap.checked_mul(2).expect("Could not grow further"))
            .max(super::INIT_ALLOC_CAPACITY);
        let layout = Layout::new::<T>().repeat(new_capacity).expect("Invalid layout").0;

        let ptr = if cap == 0 {
            unsafe { alloc.allocate(layout) }
        } else {
            let new_layout = layout;
            let old_layout = Layout::new::<T>().repeat(cap).expect("Invalid layout").0;

            unsafe { alloc.grow(ptr.cast(), old_layout, new_layout) }
        };

        let ptr = match (ptr, on_failure) {
            (Ok(ptr), _) => ptr,
            (Err(_), OnFailure::Abort) => handle_alloc_error(layout),
            (Err(_), OnFailure::Error) => return Err(AllocError),
        };

        // Creating a new Heap using the re-alloced pointer.
        // Replacing the existing heap and forgetting it so
        // that no drop code happens, avoiding the
        unsafe {
            let new = Self::from_raw_parts_in(ptr.cast(), new_capacity, alloc);
            let old = std::mem::replace(self, new);
            std::mem::forget(old);
        }

        Ok(())
    }
}