1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use log::trace;
use std::collections::HashSet;
use std::marker::PhantomData;

use super::traits::DirectedGraphNode;

type Index = usize;
type DominatorInfo = Vec<HashSet<Index>>;
type ImmediateDominatorInfo = Vec<Option<Index>>;

// A structure which encapsulates the dominance relation on a CFG.
pub struct DominatorTree<T: DirectedGraphNode> {
    dominators: DominatorInfo,
    immediate_dominators: ImmediateDominatorInfo,
    dominator_successors: DominatorInfo,
    dominance_frontier: DominatorInfo,
    marker: PhantomData<T>,
}

impl<T: DirectedGraphNode> DominatorTree<T> {
    pub fn new(basic_blocks: &[T]) -> DominatorTree<T> {
        let dominators = compute_dominators(basic_blocks);
        let (immediate_dominators, dominator_successors) =
            compute_immediate_dominators(basic_blocks, &dominators);
        let dominance_frontier = compute_dominance_frontier(basic_blocks, &immediate_dominators);
        // We assume that the first block (with index 0) represents the entry block.
        assert!(immediate_dominators[0].is_none());
        DominatorTree {
            dominators,
            immediate_dominators,
            dominator_successors,
            dominance_frontier,
            marker: PhantomData::default(),
        }
    }

    pub fn get_entry_block(&self) -> Index {
        Index::default()
    }

    pub fn get_dominators(&self, i: Index) -> HashSet<Index> {
        self.dominators[i].clone()
    }

    pub fn get_immediate_dominator(&self, i: Index) -> Option<Index> {
        self.immediate_dominators[i]
    }

    pub fn get_dominator_successors(&self, i: Index) -> HashSet<Index> {
        self.dominator_successors[i].clone()
    }

    pub fn get_dominance_frontier(&self, i: Index) -> HashSet<Index> {
        self.dominance_frontier[i].clone()
    }
}

// This is a stupid simple (quadratic) algorithm based on an iterative data-flow analysis.
fn compute_dominators<T: DirectedGraphNode>(basic_blocks: &[T]) -> DominatorInfo {
    let mut dominators = Vec::new();
    let nof_blocks = basic_blocks.len();
    dominators.push(HashSet::from([0]));
    for _ in 1..basic_blocks.len() {
        dominators.push((0..nof_blocks).collect());
    }

    let mut done = false;
    while !done {
        done = true;
        for i in 1..nof_blocks {
            let mut new_dominators: HashSet<usize> = (0..nof_blocks).collect();
            for &j in basic_blocks[i].predecessors() {
                new_dominators = new_dominators.intersection(&dominators[j]).copied().collect();
            }
            new_dominators.insert(i);
            if new_dominators != dominators[i] {
                dominators[i] = new_dominators;
                done = false;
            }
        }
    }
    dominators
}

// Compute immediate dominators (a `Vec<Option<usize>>`) and the dominator tree relation (a
// `Vec<HashSet<usize>>`). (Note that the entry block of the CFG has no immediate dominator.)
fn compute_immediate_dominators<T: DirectedGraphNode>(
    basic_blocks: &[T],
    dominators: &DominatorInfo,
) -> (ImmediateDominatorInfo, DominatorInfo) {
    let nof_blocks = basic_blocks.len();
    let mut immediate_dominators = vec![None; nof_blocks];
    let mut dominator_successors = vec![HashSet::new(); nof_blocks];

    for i in 0..nof_blocks {
        trace!("the dominator set of block {i} is {:?}", dominators[i]);
        let mut idom_candidates: HashSet<usize> = dominators[i].clone();
        idom_candidates.remove(&i);

        if idom_candidates.len() > 1 {
            // The set `all_dominators` is the strict up set of the nodes dominators. I.e.
            //
            //     `all_dominators(i) = U {Dom(j) - {j}; j strictly dominates i}`.
            //
            // The immediate dominator of the node will be the unique element in the set
            // `idom_candidates - all_dominators` when this set is non-empty.
            let mut all_dominators: HashSet<usize> = HashSet::new();
            for j in &idom_candidates {
                // 'all_dominators' is upwards closed.
                if all_dominators.contains(j) {
                    continue;
                }
                // Set `all_dominators = all_dominators U (Dom(i) \ {i}`.
                all_dominators = dominators[*j]
                    .clone()
                    .into_iter()
                    .filter(|&k| k != *j) // Remove i.
                    .collect::<HashSet<usize>>()
                    .union(&all_dominators)
                    .copied()
                    .collect();
            }
            idom_candidates = &idom_candidates - &all_dominators;
            assert!(idom_candidates.len() <= 1);
        }
        if let Some(&j) = idom_candidates.iter().next() {
            trace!("the immediate dominator of {i} is {j}");
            immediate_dominators[i] = Some(j);
            dominator_successors[j].insert(i);
        }
    }
    (immediate_dominators, dominator_successors)
}

// Compute dominance frontiers (a `Vec<HashSet<usize>>`) of all nodes. The node
// `i` is in the _dominance frontier_ of the node `j` if `j` dominates an
// immediate predecessor of `i`, but `j` does not strictly dominate `i`.
fn compute_dominance_frontier<T: DirectedGraphNode>(
    basic_blocks: &[T],
    immediate_dominators: &ImmediateDominatorInfo,
) -> DominatorInfo {
    let nof_blocks = basic_blocks.len();
    let mut dominance_frontier = vec![HashSet::new(); nof_blocks];
    for i in 0..nof_blocks {
        if basic_blocks[i].predecessors().len() > 1 {
            for &j in basic_blocks[i].predecessors() {
                let mut k = j;
                while Some(k) != immediate_dominators[i] {
                    dominance_frontier[k].insert(i);
                    k = match immediate_dominators[k] {
                        Some(idom) => idom,
                        None => break,
                    };
                }
            }
        }
    }
    dominance_frontier
}