1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//! Contains tools and structs for processing text to be inserted into the database

use serde::Deserialize;

/// Different methods for generating tokens used for full text search
#[derive(Deserialize, Debug, Eq, PartialEq)]
#[serde(tag = "kind", rename_all = "snake_case")]
pub enum Tokenizer {
    #[serde(rename_all = "camelCase")]
    Ngram {
        token_length: usize,
    },
    Standard,
}

impl Tokenizer {
    /// Process text and return the tokens based on the specific tokenizer
    pub fn process(&self, text: Vec<String>) -> Vec<String> {
        match self {
            Tokenizer::Ngram { token_length } => text
                .into_iter()
                .flat_map(|t| {
                    let chars = t.chars().collect::<Vec<_>>();

                    if chars.len() < *token_length {
                        return vec![];
                    }

                    let mut grams: Vec<String> = vec![];

                    for i in 0..=(chars.len() - token_length) {
                        grams.push(chars[i..i + token_length].iter().collect());
                    }

                    grams
                })
                .collect(),
            Tokenizer::Standard => text
                .iter()
                .flat_map(|t| t.split(&[' ', ',', ';', ':', '!']).map(|x| x.into()))
                .collect(),
        }
    }
}

/// Different methods for transforming text or tokens
#[derive(Deserialize, Debug, Eq, PartialEq)]
#[serde(tag = "kind", rename_all = "snake_case")]
pub enum TokenFilter {
    Upcase,
    Downcase,
}

impl TokenFilter {
    /// Process text based on a specific token filter
    pub fn process(&self, text: Vec<String>) -> Vec<String> {
        match self {
            TokenFilter::Upcase => text.into_iter().map(|text| text.to_uppercase()).collect(),
            TokenFilter::Downcase => text.into_iter().map(|text| text.to_lowercase()).collect(),
        }
    }
}

#[derive(Deserialize, Debug, Eq, PartialEq)]
#[serde(untagged)]
pub enum TokenProcessor {
    TokenFilter(TokenFilter),
    Tokenizer(Tokenizer),
}

impl TokenProcessor {
    /// Process text based on a specific token filter or tokenizer and return the tokens
    pub fn process(&self, text: Vec<String>) -> Vec<String> {
        match self {
            Self::TokenFilter(filter) => filter.process(text),
            Self::Tokenizer(tokenizer) => tokenizer.process(text),
        }
    }
}

/// The combination of a tokenizer and zero or more token filters.
///
/// It is used on match, dynamic-match and field-dynamic-match indexes to prepare inserted text.
#[derive(Deserialize, Debug, Eq, PartialEq)]
#[serde(rename_all = "camelCase")]
pub struct TextPipeline {
    pub tokenizer: Tokenizer,
    pub token_filters: Vec<TokenProcessor>,
}

impl TextPipeline {
    /// Process text based on the tokenizer and token filters
    pub fn process(&self, text: Vec<String>) -> Vec<String> {
        let tokenized = self.tokenizer.process(text);
        self.token_filters
            .iter()
            .fold(tokenized, |text, pass| pass.process(text))
    }
}

#[cfg(test)]
mod tests {
    use super::{TextPipeline, TokenFilter, TokenProcessor, Tokenizer};

    #[test]
    fn test_standard() {
        let output = Tokenizer::Standard.process(vec!["Hello from Ada Lovelace".into()]);

        assert_eq!(output, vec!["Hello", "from", "Ada", "Lovelace"]);
    }

    #[test]
    fn test_ngram() {
        let output = Tokenizer::Ngram { token_length: 3 }.process(vec!["Lovelace".into()]);
        assert_eq!(output, vec!["Lov", "ove", "vel", "ela", "lac", "ace"]);
    }

    #[test]
    fn test_ngram_equal_length() {
        let output = Tokenizer::Ngram { token_length: 4 }.process(vec!["Love".into()]);
        assert_eq!(output, vec!["Love"]);
    }

    #[test]
    fn test_ngram_shorter_length() {
        let output = Tokenizer::Ngram { token_length: 4 }.process(vec!["Lov".into()]);
        assert_eq!(output, Vec::<String>::new());
    }

    #[test]
    fn test_ngram_zero_length() {
        let output = Tokenizer::Ngram { token_length: 0 }.process(vec!["Lovelace".into()]);
        assert_eq!(output, vec!["", "", "", "", "", "", "", "", ""]);
    }

    #[test]
    fn test_downcase() {
        let output = TokenFilter::Downcase.process(vec!["HeLLOWorlD".into()]);
        assert_eq!(output, vec!["helloworld"]);
    }

    #[test]
    fn test_upcase() {
        let output = TokenFilter::Upcase.process(vec!["HeLLOWorlD".into()]);
        assert_eq!(output, vec!["HELLOWORLD"]);
    }

    #[test]
    fn test_chaining_filter_and_tokenizer() {
        let pipeline = TextPipeline {
            tokenizer: Tokenizer::Ngram { token_length: 3 },
            token_filters: vec![TokenProcessor::TokenFilter(TokenFilter::Upcase)],
        };

        let output = pipeline.process(vec!["HeLlOwOrLd".into()]);

        assert_eq!(
            output,
            vec!["HEL", "ELL", "LLO", "LOW", "OWO", "WOR", "ORL", "RLD"]
        );
    }

    #[test]
    fn test_chain_tokenizers() {
        let pipeline = TextPipeline {
            tokenizer: Tokenizer::Standard,
            token_filters: vec![TokenProcessor::Tokenizer(Tokenizer::Ngram {
                token_length: 3,
            })],
        };

        let output = pipeline.process(vec!["CipherStash Dev Team".into()]);

        assert_eq!(
            output,
            vec![
                "Cip", "iph", "phe", "her", "erS", "rSt", "Sta", "tas", "ash", "Dev", "Tea", "eam"
            ]
        );
    }

    #[test]
    fn test_multiple_codepoint_chars() {
        let pipeline = TextPipeline {
            tokenizer: Tokenizer::Standard,
            token_filters: vec![TokenProcessor::Tokenizer(Tokenizer::Ngram {
                token_length: 3,
            })],
        };

        let output = pipeline.process(vec!["mañana".into()]);

        assert_eq!(output, vec!["mañ", "aña", "ñan", "ana"]);
    }
}