1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
//! The Playfair cipher is the first bigram substitution cipher.
//! Invented in 1854 by Charles Wheatstone, its name honors Lord
//! Lyon Playfair for promoting its use.
//!
//! [Reference](https://en.wikipedia.org/wiki/Playfair_cipher)
//!
//! The Playfair cipher operates on a 5x5 table. The key, omitting repeated
//! characters, is written from left to right starting on the first row
//! of the table. Other key layout patterns in the table can be used
//! but are less common. Note that a letter must either be omitted
//! (typically 'Q') or two letters can occupy the same space (I=J).
//! This implementation uses the *latter* design, replacing all
//! encountered 'J' characters with 'I'.
//!
use crate::common::{alphabet, alphabet::Alphabet, cipher::Cipher, keygen::playfair_table};
type Bigram = (char, char);
/// A Playfair cipher.
///
/// This struct is created by the `new()` method. See its documentation for more.
pub struct Playfair {
/// The Playfair key table (5x5)
rows: [String; 5],
cols: [String; 5],
null_char: char,
}
impl Cipher for Playfair {
type Key = (String, Option<char>);
type Algorithm = Playfair;
/// Initialize a Playfair cipher.
///
/// The `key` tuple maps to the following `(String, Option<char>) = (keystream, null_char)`.
/// Where ...
///
/// * The `keystream` is used to generate a playfair table.
/// * The `null_char` is the character that is used to pad uneven messages
/// during the encryption process. This value will default to 'X'.
///
/// # Panics
/// * The `keystream` must not be empty.
/// * The `keystream` must not exceed the length of the playfair alphabet (25 characters).
/// * The `keystream` must not contain non-alphabetic symbols or the letter 'J'.
///
fn new(key: (String, Option<char>)) -> Playfair {
let null_char = key.1.unwrap_or_else(|| 'X').to_ascii_uppercase();
let (rows, cols) = playfair_table(&key.0);
Playfair {
rows,
cols,
null_char,
}
}
/// Encrypt a message with the Playfair cipher.
///
/// # Warning
/// * The 5x5 key table requires any 'J' characters in the message
/// to be substituted with 'I' characters (i.e. I = J).
/// * The resulting ciphertext will be fully uppercase with no whitespace.
///
/// # Errors
/// * Message contains a non-alphabetic character.
/// * Message contains the null character.
/// * Message contains whitespace.
///
/// # Examples
///
/// Basic Usage:
///
/// ```
/// use cipher_crypt::{Cipher, Playfair};
///
/// let c = Playfair::new(("playfairexample".to_string(), None));;
/// assert_eq!(
/// c.encrypt("Hidethegoldinthetreestump").unwrap(),
/// "BMODZBXDNABEKUDMUIXMKZZRYI"
/// );
/// ```
///
fn encrypt(&self, message: &str) -> Result<String, &'static str> {
if !alphabet::PLAYFAIR.is_valid(&message) {
return Err("Message must only consist of alphabetic characters.");
} else if message.to_uppercase().contains(self.null_char) {
return Err("Message cannot contain the null character.");
}
// Handles Rule 1 (Bigrams)
let bmsg = self.bigram(&message.to_uppercase());
self.apply_rules(bmsg, |v, first, second| {
(v[(first + 1) % 5], v[(second + 1) % 5])
})
}
/// Decrypt a message with the Playfair cipher.
///
/// # Warning
/// * The 5x5 key table requires any 'J' characters in the message
/// to be substituted with 'I' characters (i.e. I = J).
/// * The resulting plaintext will be fully uppercase with no whitespace.
/// * The resulting plaintext may contain added null characters.
///
/// # Errors
/// * Message contains a non-alphabetic character.
/// * Message contains whitespace.
///
/// # Examples
///
/// Basic Usage:
///
/// ```
/// use cipher_crypt::{Cipher, Playfair};
///
/// let c = Playfair::new(("playfairexample".to_string(), None));;
/// assert_eq!(
/// c.decrypt("BMODZBXDNABEKUDMUIXMKZZRYI").unwrap(),
/// "HIDETHEGOLDINTHETREXSTUMPX"
/// );
///
/// ```
///
fn decrypt(&self, message: &str) -> Result<String, &'static str> {
if !alphabet::PLAYFAIR.is_valid(&message) {
return Err("Message must only consist of alphabetic characters.");
}
// Handles Rule 1
let bmsg = self.bigram(&message.to_uppercase());
//Must be wary of negative wrap-around in modulo
self.apply_rules(bmsg, |v, first, second| {
(
v[first.checked_sub(1).unwrap_or(v.len() - 1)],
v[second.checked_sub(1).unwrap_or(v.len() - 1)],
)
})
}
}
impl Playfair {
/// Apply the PlayFair cipher algorithm.
///
/// The operations for encrypt and decrypt are identical
/// except for the direction of the substitution choice.
///
fn apply_rules<F>(&self, bigrams: Vec<Bigram>, shift: F) -> Result<String, &'static str>
where
F: Fn(Vec<char>, usize, usize) -> Bigram,
{
let mut text = String::new();
for bigram in bigrams {
let chars: Bigram;
if let Some(b) = self.apply_slice(bigram, &self.rows, &shift) {
// Rule 2 (Row)
chars = b;
} else if let Some(b) = self.apply_slice(bigram, &self.cols, &shift) {
// Rule 3 (Column)
chars = b;
} else {
// Rule 4 (Rectangle)
chars = self.apply_rectangle(bigram);
}
text.push(chars.0);
text.push(chars.1);
}
Ok(text)
}
/// Apply rule 1 (bigrams).
///
/// # Rule 1
///
/// If both letters are the same (or only one letter is left), add the null_char
/// after the first letter. Encrypt the new pair and continue.
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
///
fn bigram(&self, message: &str) -> Vec<Bigram> {
if message.contains(char::is_whitespace) {
panic!("Message contains whitespace.");
}
if !alphabet::PLAYFAIR.is_valid(&message) {
panic!("Message must only consist of alphabetic characters.");
}
let mut bigrams: Vec<Bigram> = Vec::new();
let mut msg_iter = message.chars().peekable();
let mut skip = false;
while let Some(current) = msg_iter.next() {
if skip {
skip = false;
continue;
}
if let Some(next) = msg_iter.peek() {
if next == ¤t {
bigrams.push((current, self.null_char)); // Add the null character for repeating chars
skip = true;
} else {
bigrams.push((current, *next)); // Add the next two letters
skip = true;
}
} else {
bigrams.push((current, self.null_char)); //It's uneven - add the null char
}
}
bigrams
}
/// Apply rule 2 (Row) or rule 3 (Column).
///
/// # Rule 2
///
/// If the letters appear on the same row of your table, replace them
/// with the letters to their immediate right respectively (wrapping
/// around to the left side of the row if a letter in the original pair
/// was on the right side of the row).
///
/// # Rule 3
///
/// If the letters appear on the same column of your table, replace them
/// with the letters immediately below respectively (wrapping around to the
/// top side of the column if a letter in the original pair was on the
/// bottom side of the column).
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
///
fn apply_slice<F>(&self, b: Bigram, slices: &[String; 5], shift: &F) -> Option<Bigram>
where
F: Fn(Vec<char>, usize, usize) -> Bigram,
{
for slice in slices.iter() {
if let Some(first) = slice.find(b.0) {
if let Some(second) = slice.find(b.1) {
return Some(shift(slice.chars().collect(), first, second));
}
}
}
None
}
/// Apply rule 4 (Rectangle).
///
/// # Rule 4
///
/// If the letters are not on the same row or column, replace them with
/// the letters on the same row respectively but at the other pair of
/// corners of the rectangle defined by the original pair. The order is
/// important – the first letter of the encrypted pair is the one that
/// lies on the same row as the first letter of the plaintext pair.
///
/// [Reference](https://en.wikipedia.org/wiki/Playfair_cipher#Description)
///
fn apply_rectangle(&self, b: Bigram) -> Bigram {
let row_indices = find_corners(b, &self.cols);
let col_indices = find_corners(b, &self.rows);
let row0: Vec<char> = self.rows[row_indices.0].chars().collect();
let row1: Vec<char> = self.rows[row_indices.1].chars().collect();
(row0[col_indices.1], row1[col_indices.0])
}
}
/// Identifies 2 corners of the rectangle.
fn find_corners(b: Bigram, slices: &[String; 5]) -> (usize, usize) {
let mut indices = (0, 0);
for slice in slices.iter() {
if let Some(pos) = slice.find(b.0) {
indices.0 = pos;
} else if let Some(pos) = slice.find(b.1) {
indices.1 = pos;
}
}
indices
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn bigram_handles_repeats() {
let pf = Playfair::new(("test".to_string(), Some('X')));
let message = "FIZZBAR";
assert_eq!(
vec![('F', 'I'), ('Z', 'X'), ('B', 'A'), ('R', 'X'),],
pf.bigram(message)
);
}
#[test]
fn bigram_handles_odd_length() {
let pf = Playfair::new(("test".to_string(), Some('Z')));
let message = "WORLD";
assert_eq!(
vec![('W', 'O'), ('R', 'L'), ('D', 'Z'),],
pf.bigram(message)
);
}
#[test]
fn invalid_encrypt_message_whitespace() {
let pf = Playfair::new(("playfairexample".to_string(), None));
assert!(pf.encrypt("This contains whitespace").is_err());
}
#[test]
fn invalid_encrypt_message_null_char() {
let pf = Playfair::new(("playfairexample".to_string(), Some('Z')));
assert!(pf.encrypt("Thiscontainsthenullcharz").is_err());
}
#[test]
fn invalid_decrypt_message_symbols() {
let pf = Playfair::new(("playfairexample".to_string(), None));
assert!(pf.decrypt("This!contains!whitespace").is_err());
}
#[test]
fn simple_encrypt() {
let pf = Playfair::new(("playfairexample".to_string(), None));
assert_eq!(
"BMODZBXDNABEKUDMUIXMKZZRYI",
pf.encrypt("Hidethegoldinthetreestump").unwrap(),
);
}
#[test]
fn simple_decrypt() {
let pf = Playfair::new(("playfairexample".to_string(), None));
assert_eq!(
"HIDETHEGOLDINTHETREXSTUMPX",
pf.decrypt("BMODZBXDNABEKUDMUIXMKZZRYI").unwrap(),
);
}
#[test]
fn negative_wrap_around() {
let pf = Playfair::new(("apt".to_string(), None));
let msg = "HELLOWORLD";
assert_eq!("HELXOWORLD", pf.decrypt(&pf.encrypt(msg).unwrap()).unwrap());
}
}