1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
use crate::{DrainChunks, IntoChunks};

use bytes::{Buf, BufMut, Bytes, BytesMut};

use std::collections::VecDeque;
use std::io::IoSlice;
use std::mem::MaybeUninit;

const DEFAULT_CHUNK_SIZE: usize = 4096;
const INITIAL_CHUNKS_CAPACITY: usize = 1;

/// A non-contiguous buffer for efficient serialization of data structures.
///
/// A `ChunkedBytes` container has a staging buffer to coalesce small byte
/// sequences of source data, and a queue of byte chunks split off the staging
/// buffer that can be incrementally consumed by an output API such as an object
/// implementing `AsyncWrite`. Once the number of bytes in the staging
/// buffer reaches a certain configured chunk size, the buffer content is
/// split off to form a new chunk.
///
/// Refer to the documentation on the methods available for `ChunkedBytes`,
/// including the methods of traits `Buf` and `BufMut`, for details on working
/// with this container.
#[derive(Debug)]
pub struct ChunkedBytes {
    staging: BytesMut,
    chunks: VecDeque<Bytes>,
    chunk_size: usize,
}

impl Default for ChunkedBytes {
    #[inline]
    fn default() -> Self {
        ChunkedBytes {
            staging: BytesMut::new(),
            chunks: VecDeque::with_capacity(INITIAL_CHUNKS_CAPACITY),
            chunk_size: DEFAULT_CHUNK_SIZE,
        }
    }
}

impl ChunkedBytes {
    /// Creates a new `ChunkedBytes` container with the preferred chunk size
    /// set to a default value.
    #[inline]
    pub fn new() -> Self {
        Default::default()
    }

    /// Creates a new `ChunkedBytes` container with the given chunk size
    /// to prefer.
    #[inline]
    pub fn with_preferred_chunk_size(chunk_size: usize) -> Self {
        ChunkedBytes {
            chunk_size,
            ..Default::default()
        }
    }

    /// Returns the size this `ChunkedBytes` container uses as the threshold
    /// for splitting off complete chunks.
    ///
    /// Note that the size of produced chunks may be larger than the
    /// configured value due to the allocation strategy used internally by
    /// the implementation. Chunks may also be smaller than the threshold if
    /// writing with `BufMut` methods has been mixed with use of the
    /// `push_chunk` method, or the `flush` method has been called directly.
    #[inline]
    pub fn preferred_chunk_size(&self) -> usize {
        self.chunk_size
    }

    /// Returns true if the `ChunkedBytes` container has no complete chunks
    /// and the staging buffer is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.chunks.is_empty() && self.staging.is_empty()
    }

    /// Splits any bytes that are currently in the staging buffer into a new
    /// complete chunk.
    /// If the staging buffer is empty, this method does nothing.
    ///
    /// Most users should not need to call this method. It is called
    /// internally when needed by the methods that advance the writing
    /// position.
    #[inline]
    pub fn flush(&mut self) {
        if !self.staging.is_empty() {
            let bytes = self.staging.split().freeze();
            self.chunks.push_back(bytes)
        }
    }

    /// Appends a `Bytes` slice to the container without copying the data.
    ///
    /// If there are any bytes currently in the staging buffer, they are split
    /// to form a complete chunk. Next, the given slice is appended as the
    /// next chunk.
    #[inline]
    pub fn push_chunk(&mut self, chunk: Bytes) {
        if !chunk.is_empty() {
            self.flush();
            self.chunks.push_back(chunk);
        }
    }

    /// Returns an iterator that removes complete chunks from the
    /// `ChunkedBytes` container and yields the removed chunks as `Bytes`
    /// slice handles. This does not include bytes in the staging buffer.
    ///
    /// The chunks are removed even if the iterator is dropped without being
    /// consumed until the end. It is unspecified how many chunks are removed
    /// if the `DrainChunks` value is not dropped, but the borrow it holds
    /// expires (e.g. due to `std::mem::forget`).
    #[inline]
    pub fn drain_chunks(&mut self) -> DrainChunks<'_> {
        DrainChunks::new(self.chunks.drain(..))
    }

    /// Consumes the `ChunkedBytes` container to produce an iterator over
    /// its chunks. If there are bytes in the staging buffer, they are yielded
    /// as the last chunk.
    ///
    /// The memory allocated for `IntoChunks` may be slightly more than the
    /// `ChunkedBytes` container it consumes. This is an infrequent side effect
    /// of making the internal state efficient in general for iteration.
    #[inline]
    pub fn into_chunks(mut self) -> IntoChunks {
        if !self.staging.is_empty() {
            self.chunks.push_back(self.staging.freeze());
        }
        IntoChunks::new(self.chunks.into_iter())
    }
}

impl BufMut for ChunkedBytes {
    #[inline]
    fn remaining_mut(&self) -> usize {
        self.staging.remaining_mut()
    }

    /// Advances the writing position in the staging buffer.
    ///
    /// If the number of bytes accumulated in the staging buffer reaches
    /// or exceeds the preferred chunk size, the bytes are split off
    /// to form a new complete chunk.
    ///
    /// # Panics
    ///
    /// This function may panic if `cnt > self.remaining_mut()`.
    ///
    #[inline]
    unsafe fn advance_mut(&mut self, cnt: usize) {
        self.staging.advance_mut(cnt);
        if self.staging.len() >= self.chunk_size {
            self.flush();
        }
    }

    /// Returns a mutable slice of unwritten bytes available in
    /// the staging buffer, starting at the current writing position.
    ///
    /// The length of the slice may be larger than the preferred chunk
    /// size due to the allocation strategy used internally by
    /// the implementation.
    #[inline]
    fn bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        if self.staging.len() == self.staging.capacity() {
            self.flush();
            self.staging.reserve(self.chunk_size);
        }
        self.staging.bytes_mut()
    }
}

impl Buf for ChunkedBytes {
    fn remaining(&self) -> usize {
        self.chunks
            .iter()
            .fold(self.staging.len(), |sum, chunk| sum + chunk.len())
    }

    #[inline]
    fn has_remaining(&self) -> bool {
        !self.is_empty()
    }

    /// Returns a slice of the bytes in the first extant complete chunk,
    /// or the bytes in the staging buffer if there are no unconsumed chunks.
    ///
    /// It is more efficient to use `bytes_vectored` to gather all the disjoint
    /// slices for vectored output, as is done in many specialized
    /// implementations of the `AsyncWrite::poll_write_buf` method.
    #[inline]
    fn bytes(&self) -> &[u8] {
        if let Some(chunk) = self.chunks.front() {
            chunk
        } else {
            &self.staging
        }
    }

    /// Advances the reading position by `cnt`, dropping the `Bytes` references
    /// to any complete chunks that the position has been advanced past
    /// and then advancing the starting position of the first remaining chunk.
    /// If there are no complete chunks left, the reading position is advanced
    /// in the staging buffer, effectively removing the consumed bytes.
    ///
    /// # Panics
    ///
    /// This function may panic when `cnt > self.remaining()`.
    ///
    fn advance(&mut self, mut cnt: usize) {
        loop {
            match self.chunks.front_mut() {
                None => {
                    self.staging.advance(cnt);
                    return;
                }
                Some(chunk) => {
                    let len = chunk.len();
                    if cnt < len {
                        chunk.advance(cnt);
                        return;
                    } else {
                        cnt -= len;
                        self.chunks.pop_front();
                    }
                }
            }
        }
    }

    /// Fills `dst` sequentially with the slice views of the chunks, then
    /// the bytes in the staging buffer if any remain and there is
    /// another unfilled entry left in `dst`. Returns the number of `IoSlice`
    /// entries filled.
    fn bytes_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
        let n = {
            let zipped = dst.iter_mut().zip(self.chunks.iter());
            let len = zipped.len();
            for (io_slice, chunk) in zipped {
                *io_slice = IoSlice::new(chunk);
            }
            len
        };

        if n < dst.len() && !self.staging.is_empty() {
            dst[n] = IoSlice::new(&self.staging);
            n + 1
        } else {
            n
        }
    }

    fn to_bytes(&mut self) -> Bytes {
        match self.chunks.pop_front() {
            None => self.staging.split().freeze(),
            Some(chunk) => {
                if self.is_empty() {
                    return chunk;
                }
                let cap = chunk.len() + self.remaining();
                let mut buf = BytesMut::with_capacity(cap);
                buf.put(chunk);
                while let Some(chunk) = self.chunks.pop_front() {
                    buf.put(chunk);
                }
                buf.put(self.staging.split());
                buf.freeze()
            }
        }
    }
}