1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
#![cfg_attr(not(any(doc, feature = "std", test)), no_std)]
#![cfg_attr(docsrs, feature(doc_auto_cfg, doc_cfg), deny(rustdoc::all))]
#![cfg_attr(feature = "nightly", feature(never_type, rustc_attrs))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs, clippy::undocumented_unsafe_blocks)]
#![allow(
clippy::should_implement_trait,
clippy::type_complexity,
clippy::result_unit_err
)]
// TODO: Talk about `.map` and purity assumptions
extern crate alloc;
macro_rules! go_extra {
( $O :ty ) => {
#[inline(always)]
fn go_emit(&self, inp: &mut InputRef<'a, '_, I, E>) -> PResult<Emit, $O> {
ParserSealed::<I, $O, E>::go::<Emit>(self, inp)
}
#[inline(always)]
fn go_check(&self, inp: &mut InputRef<'a, '_, I, E>) -> PResult<Check, $O> {
ParserSealed::<I, $O, E>::go::<Check>(self, inp)
}
};
}
macro_rules! go_cfg_extra {
( $O :ty ) => {
#[inline(always)]
fn go_emit_cfg(
&self,
inp: &mut InputRef<'a, '_, I, E>,
cfg: Self::Config,
) -> PResult<Emit, $O> {
ConfigParserSealed::<I, $O, E>::go_cfg::<Emit>(self, inp, cfg)
}
#[inline(always)]
fn go_check_cfg(
&self,
inp: &mut InputRef<'a, '_, I, E>,
cfg: Self::Config,
) -> PResult<Check, $O> {
ConfigParserSealed::<I, $O, E>::go_cfg::<Check>(self, inp, cfg)
}
};
}
mod blanket;
pub mod combinator;
pub mod container;
pub mod error;
#[cfg(feature = "extension")]
pub mod extension;
pub mod extra;
#[cfg(docsrs)]
pub mod guide;
pub mod input;
#[cfg(feature = "label")]
pub mod label;
pub mod primitive;
mod private;
pub mod recovery;
pub mod recursive;
#[cfg(feature = "regex")]
pub mod regex;
pub mod span;
mod stream;
pub mod text;
pub mod util;
/// Commonly used functions, traits and types.
///
/// *Listen, three eyes,” he said, “don’t you try to outweird me, I get stranger things than you free with my breakfast
/// cereal.”*
pub mod prelude {
#[cfg(feature = "regex")]
pub use super::regex::regex;
pub use super::{
error::{Cheap, EmptyErr, Error as _, Rich, Simple},
extra,
input::Input,
primitive::{any, choice, custom, empty, end, group, just, map_ctx, none_of, one_of, todo},
recovery::{nested_delimiters, skip_then_retry_until, skip_until, via_parser},
recursive::{recursive, Recursive},
span::{SimpleSpan, Span as _},
text, Boxed, ConfigIterParser, ConfigParser, IterParser, ParseResult, Parser,
};
pub use crate::{select, select_ref};
}
use crate::input::InputOwn;
use alloc::{boxed::Box, rc::Rc, string::String, sync::Arc, vec, vec::Vec};
use core::{
borrow::Borrow,
cell::{Cell, RefCell, UnsafeCell},
cmp::{Eq, Ordering},
fmt,
hash::Hash,
marker::PhantomData,
mem::MaybeUninit,
ops::{Range, RangeFrom},
panic::Location,
str::FromStr,
};
use hashbrown::HashMap;
#[cfg(feature = "label")]
use self::label::{LabelError, Labelled};
use self::{
combinator::*,
container::*,
error::Error,
extra::ParserExtra,
input::{BorrowInput, Emitter, ExactSizeInput, InputRef, SliceInput, StrInput, ValueInput},
prelude::*,
primitive::Any,
private::{
Check, ConfigIterParserSealed, ConfigParserSealed, Emit, IPResult, IterParserSealed,
Located, MaybeUninitExt, Mode, PResult, ParserSealed, Sealed,
},
recovery::{RecoverWith, Strategy},
span::Span,
text::*,
util::{MaybeMut, MaybeRef},
};
#[cfg(all(feature = "extension", doc))]
use self::{extension::v1::*, primitive::custom, stream::Stream};
/// A type that allows mentioning type parameters *without* all of the customary omission of auto traits that comes
/// with `PhantomData`.
struct EmptyPhantom<T>(core::marker::PhantomData<T>);
impl<T> EmptyPhantom<T> {
const fn new() -> Self {
Self(core::marker::PhantomData)
}
}
impl<T> Copy for EmptyPhantom<T> {}
impl<T> Clone for EmptyPhantom<T> {
fn clone(&self) -> Self {
*self
}
}
// SAFETY: This is safe because `EmptyPhantom` doesn't actually contain a `T`.
unsafe impl<T> Send for EmptyPhantom<T> {}
// SAFETY: This is safe because `EmptyPhantom` doesn't actually contain a `T`.
unsafe impl<T> Sync for EmptyPhantom<T> {}
impl<T> Unpin for EmptyPhantom<T> {}
impl<T> core::panic::UnwindSafe for EmptyPhantom<T> {}
impl<T> core::panic::RefUnwindSafe for EmptyPhantom<T> {}
#[cfg(feature = "sync")]
mod sync {
use super::*;
pub(crate) type RefC<T> = alloc::sync::Arc<T>;
pub(crate) type RefW<T> = alloc::sync::Weak<T>;
pub(crate) type DynParser<'a, 'b, I, O, E> = dyn Parser<'a, I, O, E> + Send + Sync + 'b;
/// A trait that requires either nothing or `Send` and `Sync` bounds depending on whether the `sync` feature is
/// enabled. Used to constrain API usage succinctly and easily.
pub trait MaybeSync: Send + Sync {}
impl<T: Send + Sync> MaybeSync for T {}
}
#[cfg(not(feature = "sync"))]
mod sync {
use super::*;
pub(crate) type RefC<T> = alloc::rc::Rc<T>;
pub(crate) type RefW<T> = alloc::rc::Weak<T>;
pub(crate) type DynParser<'a, 'b, I, O, E> = dyn Parser<'a, I, O, E> + 'b;
/// A trait that requires either nothing or `Send` and `Sync` bounds depending on whether the `sync` feature is
/// enabled. Used to constrain API usage succinctly and easily.
pub trait MaybeSync {}
impl<T> MaybeSync for T {}
}
use sync::{DynParser, MaybeSync, RefC, RefW};
/// The result of running a [`Parser`]. Can be converted into a [`Result`] via
/// [`ParseResult::into_result`] for when you only care about success or failure, or into distinct
/// error and output via [`ParseResult::into_output_errors`]
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ParseResult<T, E> {
output: Option<T>,
errs: Vec<E>,
}
impl<T, E> ParseResult<T, E> {
pub(crate) fn new(output: Option<T>, errs: Vec<E>) -> ParseResult<T, E> {
ParseResult { output, errs }
}
/// Whether this result contains output
pub fn has_output(&self) -> bool {
self.output.is_some()
}
/// Whether this result has any errors
pub fn has_errors(&self) -> bool {
!self.errs.is_empty()
}
/// Get a reference to the output of this result, if it exists
pub fn output(&self) -> Option<&T> {
self.output.as_ref()
}
/// Get a slice containing the parse errors for this result. The slice will be empty if there are no errors.
pub fn errors(&self) -> impl ExactSizeIterator<Item = &E> {
self.errs.iter()
}
/// Convert this `ParseResult` into an option containing the output, if any exists
pub fn into_output(self) -> Option<T> {
self.output
}
/// Convert this `ParseResult` into a vector containing any errors. The vector will be empty if there were no
/// errors.
pub fn into_errors(self) -> Vec<E> {
self.errs
}
/// Convert this `ParseResult` into a tuple containing the output, if any existed, and errors, if any were
/// encountered.
pub fn into_output_errors(self) -> (Option<T>, Vec<E>) {
(self.output, self.errs)
}
/// Convert this `ParseResult` into a standard `Result`. This discards output if parsing generated any errors,
/// matching the old behavior of [`Parser::parse`].
pub fn into_result(self) -> Result<T, Vec<E>> {
if self.errs.is_empty() {
self.output.ok_or(self.errs)
} else {
Err(self.errs)
}
}
/// If the parse succeeded (i.e: no errors were produced), this function returns the output value, `T`.
///
/// If parsing generated errors, this function panics (even if these errors were non-fatal).
#[track_caller]
pub fn unwrap(self) -> T
where
E: fmt::Debug,
{
if self.errs.is_empty() {
self.output.expect("parser generated no errors or output")
} else {
panic!(
"called `ParseResult::unwrap()` on a parse result with errors: {:?}",
self.errs
)
}
}
}
/// A trait implemented by parsers.
///
/// Parsers take inputs of type `I`, which will implement [`Input`]. Refer to the documentation on [`Input`] for examples
/// of common input types. It will then attempt to parse them into a value of type `O`, which may be just about any type.
/// In doing so, they may encounter errors. These need not be fatal to the parsing process: syntactic errors can be
/// recovered from and a valid output may still be generated alongside any syntax errors that were encountered along the
/// way. Usually, this output comes in the form of an
/// [Abstract Syntax Tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree) (AST).
///
/// The final type parameter, `E`, is expected to be one of the type in the [`extra`] module,
/// implementing [`ParserExtra`]. This trait is used to encapsulate the various types a parser
/// uses that are not simply its input and output. Refer to the documentation on the [`ParserExtra`] trait
/// for more detail on the contained types. If not provided, it will default to [`extra::Default`],
/// which will have the least overhead, but also the least meaningful errors.
///
/// The lifetime of the parser is used for zero-copy output - the input is bound by the lifetime,
/// and returned values or parser state may take advantage of this to borrow tokens or slices of the
/// input and hold on to them, if the input supports this.
///
/// You cannot directly implement this trait yourself. If you feel like the built-in parsers are not enough for you,
/// there are several options in increasing order of complexity:
///
/// 1) Try using combinators like [`Parser::try_map`] and [`Parser::validate`] to implement custom error generation
///
/// 2) Use [`custom`] to implement your own parsing logic inline within an existing parser
///
/// 3) Use chumsky's [`extension`] API to write an extension parser that feels like it's native to chumsky
///
/// 4) If you believe you've found a common use-case that's missing from chumsky, you could open a pull request to
/// implement it in chumsky itself.
#[cfg_attr(
feature = "nightly",
rustc_on_unimplemented(
message = "`{Self}` is not a parser from `{I}` to `{O}`",
label = "This parser is not compatible because it does not implement `Parser<{I}, {O}>`",
note = "You should check that the output types of your parsers are consistent with the combinators you're using",
)
)]
pub trait Parser<'a, I: Input<'a>, O, E: ParserExtra<'a, I> = extra::Default>:
ParserSealed<'a, I, O, E>
{
/// Parse a stream of tokens, yielding an output if possible, and any errors encountered along the way.
///
/// If `None` is returned (i.e: parsing failed) then there will *always* be at least one item in the error `Vec`.
/// If you want to include non-default state, use [`Parser::parse_with_state`] instead.
///
/// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
/// [`&[T]`], a [`&str`], [`Stream`], or anything implementing [`Input`] to it.
fn parse(&self, input: I) -> ParseResult<O, E::Error>
where
Self: Sized,
I: Input<'a>,
E::State: Default,
E::Context: Default,
{
self.parse_with_state(input, &mut E::State::default())
}
/// Parse a stream of tokens, yielding an output if possible, and any errors encountered along the way.
/// The provided state will be passed on to parsers that expect it, such as [`map_with_state`](Parser::map_with_state).
///
/// If `None` is returned (i.e: parsing failed) then there will *always* be at least one item in the error `Vec`.
/// If you want to just use a default state value, use [`Parser::parse`] instead.
///
/// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
/// [`&[T]`], a [`&str`], [`Stream`], or anything implementing [`Input`] to it.
fn parse_with_state(&self, input: I, state: &mut E::State) -> ParseResult<O, E::Error>
where
Self: Sized,
I: Input<'a>,
E::Context: Default,
{
let mut own = InputOwn::new_state(input, state);
let mut inp = own.as_ref_start();
let res = self.then_ignore(end()).go::<Emit>(&mut inp);
let alt = inp.errors.alt.take();
let mut errs = own.into_errs();
let out = match res {
Ok(out) => Some(out),
Err(()) => {
errs.push(alt.expect("error but no alt?").err);
None
}
};
ParseResult::new(out, errs)
}
/// Parse a stream of tokens, ignoring any output, and returning any errors encountered along the way.
///
/// If parsing failed, then there will *always* be at least one item in the returned `Vec`.
/// If you want to include non-default state, use [`Parser::check_with_state`] instead.
///
/// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
/// [`&[T]`], a [`&str`], [`Stream`], or anything implementing [`Input`] to it.
fn check(&self, input: I) -> ParseResult<(), E::Error>
where
Self: Sized,
I: Input<'a>,
E::State: Default,
E::Context: Default,
{
self.check_with_state(input, &mut E::State::default())
}
/// Parse a stream of tokens, ignoring any output, and returning any errors encountered along the way.
///
/// If parsing failed, then there will *always* be at least one item in the returned `Vec`.
/// If you want to just use a default state value, use [`Parser::check`] instead.
///
/// Although the signature of this function looks complicated, it's simpler than you think! You can pass a
/// [`&[T]`], a [`&str`], [`Stream`], or anything implementing [`Input`] to it.
fn check_with_state(&self, input: I, state: &mut E::State) -> ParseResult<(), E::Error>
where
Self: Sized,
I: Input<'a>,
E::Context: Default,
{
let mut own = InputOwn::new_state(input, state);
let mut inp = own.as_ref_start();
let res = self.then_ignore(end()).go::<Check>(&mut inp);
let alt = inp.errors.alt.take();
let mut errs = own.into_errs();
let out = match res {
Ok(()) => Some(()),
Err(()) => {
errs.push(alt.expect("error but no alt?").err);
None
}
};
ParseResult::new(out, errs)
}
/// Map from a slice of the input based on the current parser's span to a value.
///
/// The returned value may borrow data from the input slice, making this function very useful
/// for creating zero-copy AST output values
fn map_slice<U, F: Fn(I::Slice) -> U>(self, f: F) -> MapSlice<'a, Self, I, O, E, F, U>
where
Self: Sized,
I: SliceInput<'a>,
{
MapSlice {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// Convert the output of this parser into a slice of the input, based on the current parser's
/// span.
///
/// This is effectively a special case of [`map_slice`](Parser::map_slice)`(|x| x)`
fn slice(self) -> Slice<Self, O>
where
Self: Sized,
{
Slice {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Filter the output of this parser, accepting only inputs that match the given predicate.
///
/// The output type of this parser is `I`, the input that was found.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let lowercase = any::<_, extra::Err<Simple<char>>>()
/// .filter(char::is_ascii_lowercase)
/// .repeated()
/// .at_least(1)
/// .collect::<String>();
///
/// assert_eq!(lowercase.parse("hello").into_result(), Ok("hello".to_string()));
/// assert!(lowercase.parse("Hello").has_errors());
/// ```
fn filter<F: Fn(&O) -> bool>(self, f: F) -> Filter<Self, F>
where
Self: Sized,
{
Filter {
parser: self,
filter: f,
}
}
/// Map the output of this parser to another value.
///
/// The output type of this parser is `U`, the same as the function's output.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// #[derive(Debug, PartialEq)]
/// enum Token { Word(String), Num(u64) }
///
/// let word = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_alphabetic())
/// .repeated().at_least(1)
/// .collect::<String>()
/// .map(Token::Word);
///
/// let num = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_ascii_digit())
/// .repeated().at_least(1)
/// .collect::<String>()
/// .map(|s| Token::Num(s.parse().unwrap()));
///
/// let token = word.or(num);
///
/// assert_eq!(token.parse("test").into_result(), Ok(Token::Word("test".to_string())));
/// assert_eq!(token.parse("42").into_result(), Ok(Token::Num(42)));
/// ```
fn map<U, F: Fn(O) -> U>(self, f: F) -> Map<Self, O, F>
where
Self: Sized,
{
Map {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// Map the output of this parser to another value, making use of the pattern's span when doing so.
///
/// This is very useful when generating an AST that attaches a span to each AST node.
///
/// The output type of this parser is `U`, the same as the function's output.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
///
/// // It's common for AST nodes to use a wrapper type that allows attaching span information to them
/// #[derive(Debug, PartialEq)]
/// pub struct Spanned<T>(T, SimpleSpan<usize>);
///
/// let ident = text::ident::<_, _, extra::Err<Simple<char>>>()
/// .map_with_span(Spanned) // Equivalent to `.map_with_span(|ident, span| Spanned(ident, span))`
/// .padded();
///
/// assert_eq!(ident.parse("hello").into_result(), Ok(Spanned("hello", (0..5).into())));
/// assert_eq!(ident.parse(" hello ").into_result(), Ok(Spanned("hello", (7..12).into())));
/// ```
fn map_with_span<U, F: Fn(O, I::Span) -> U>(self, f: F) -> MapWithSpan<Self, O, F>
where
Self: Sized,
{
MapWithSpan {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// Transform the output of this parser to the pattern's span.
///
/// This is commonly used when you know what pattern you've parsed and are only interested in the span of the
/// pattern.
///
/// The output type of this parser is `I::Span`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
///
/// // It's common for AST nodes to use a wrapper type that allows attaching span information to them
/// #[derive(Debug, PartialEq)]
/// pub enum Expr<'a> {
/// Int(&'a str, SimpleSpan),
/// // The span is that of the operator, '+'
/// Add(Box<Expr<'a>>, SimpleSpan, Box<Expr<'a>>),
/// }
///
/// let int = text::int::<_, _, extra::Err<Simple<char>>>(10)
/// .slice()
/// .map_with_span(Expr::Int)
/// .padded();
///
/// let add_op = just('+').to_span().padded();
/// let sum = int.foldl(
/// add_op.then(int).repeated(),
/// |a, (op_span, b)| Expr::Add(Box::new(a), op_span, Box::new(b)),
/// );
///
/// assert_eq!(sum.parse("42 + 7 + 13").into_result(), Ok(Expr::Add(
/// Box::new(Expr::Add(
/// Box::new(Expr::Int("42", (0..2).into())),
/// (3..4).into(),
/// Box::new(Expr::Int("7", (5..6).into())),
/// )),
/// (7..8).into(),
/// Box::new(Expr::Int("13", (9..11).into())),
/// )));
/// ```
fn to_span(self) -> ToSpan<Self, O>
where
Self: Sized,
{
ToSpan {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Map the output of this parser to another value, making use of the parser's state when doing so.
///
/// This is very useful for parsing non context-free grammars.
///
/// The output type of this parser is `U`, the same as the function's output.
///
/// # Examples
///
/// ## General
///
/// ```
/// # use chumsky::prelude::*;
/// use std::ops::Range;
/// use lasso::{Rodeo, Spur};
///
/// // It's common for AST nodes to use interned versions of identifiers
/// // Keys are generally smaller, faster to compare, and can be `Copy`
/// #[derive(Copy, Clone)]
/// pub struct Ident(Spur);
///
/// let ident = text::ident::<_, _, extra::Full<Simple<char>, Rodeo, ()>>()
/// .map_with_state(|ident, span, state| Ident(state.get_or_intern(ident)))
/// .padded()
/// .repeated()
/// .at_least(1)
/// .collect::<Vec<_>>();
///
/// // Test out parser
///
/// let mut interner = Rodeo::new();
///
/// match ident.parse_with_state("hello", &mut interner).into_result() {
/// Ok(idents) => {
/// assert_eq!(interner.resolve(&idents[0].0), "hello");
/// }
/// Err(e) => panic!("Parsing Failed: {:?}", e),
/// }
///
/// match ident.parse_with_state("hello hello", &mut interner).into_result() {
/// Ok(idents) => {
/// assert_eq!(idents[0].0, idents[1].0);
/// }
/// Err(e) => panic!("Parsing Failed: {:?}", e),
/// }
/// ```
///
/// See [`Parser::foldl_with_state`] for an example showing arena allocation via parser state.
fn map_with_state<U, F: Fn(O, I::Span, &mut E::State) -> U>(
self,
f: F,
) -> MapWithState<Self, O, F>
where
Self: Sized,
{
MapWithState {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// After a successful parse, apply a fallible function to the output. If the function produces an error, treat it
/// as a parsing error.
///
/// If you wish parsing of this pattern to continue when an error is generated instead of halting, consider using
/// [`Parser::validate`] instead.
///
/// The output type of this parser is `U`, the [`Ok`] return value of the function.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let byte = text::int::<_, _, extra::Err<Rich<char>>>(10)
/// .try_map(|s: &str, span| s
/// .parse::<u8>()
/// .map_err(|e| Rich::custom(span, e)));
///
/// assert!(byte.parse("255").has_output());
/// assert!(byte.parse("256").has_errors()); // Out of range
/// ```
#[doc(alias = "filter_map")]
fn try_map<U, F: Fn(O, I::Span) -> Result<U, E::Error>>(self, f: F) -> TryMap<Self, O, F>
where
Self: Sized,
{
TryMap {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// After a successful parse, apply a fallible function to the output, making use of the parser's state when
/// doing so. If the function produces an error, treat it as a parsing error.
///
/// If you wish parsing of this pattern to continue when an error is generated instead of halting, consider using
/// [`Parser::validate`] instead.
///
/// The output type of this parser is `U`, the [`Ok`] return value of the function.
fn try_map_with_state<U, F: Fn(O, I::Span, &mut E::State) -> Result<U, E::Error>>(
self,
f: F,
) -> TryMapWithState<Self, O, F>
where
Self: Sized,
{
TryMapWithState {
parser: self,
mapper: f,
phantom: EmptyPhantom::new(),
}
}
/// Ignore the output of this parser, yielding `()` as an output instead.
///
/// This can be used to reduce the cost of parsing by avoiding unnecessary allocations (most collections containing
/// [ZSTs](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
/// [do not allocate](https://doc.rust-lang.org/std/vec/struct.Vec.html#guarantees)). For example, it's common to
/// want to ignore whitespace in many grammars (see [`text::whitespace`]).
///
/// The output type of this parser is `()`.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// // A parser that parses any number of whitespace characters without allocating
/// let whitespace = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_whitespace())
/// .ignored()
/// .repeated()
/// .collect::<Vec<_>>();
///
/// assert_eq!(whitespace.parse(" ").into_result(), Ok(vec![(); 4]));
/// assert!(whitespace.parse(" hello").has_errors());
/// ```
fn ignored(self) -> Ignored<Self, O>
where
Self: Sized,
{
Ignored {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Memoise the parser such that later attempts to parse the same input 'remember' the attempt and exit early.
///
/// If you're finding that certain inputs produce exponential behaviour in your parser, strategically applying
/// memoisation to a ['garden path'](https://en.wikipedia.org/wiki/Garden-path_sentence) rule is often an effective
/// way to solve the problem. At the limit, applying memoisation to all combinators will turn any parser into one
/// with `O(n)`, albeit with very significant per-element overhead and high memory usage.
///
/// Memoisation also works with recursion, so this can be used to write parsers using
/// [left recursion](https://en.wikipedia.org/wiki/Left_recursion).
// TODO: Example
#[cfg(feature = "memoization")]
fn memoised(self) -> Memoised<Self>
where
Self: Sized,
{
Memoised { parser: self }
}
/// Transform all outputs of this parser to a pretermined value.
///
/// The output type of this parser is `U`, the type of the predetermined value.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// #[derive(Clone, Debug, PartialEq)]
/// enum Op { Add, Sub, Mul, Div }
///
/// let op = just::<_, _, extra::Err<Simple<char>>>('+').to(Op::Add)
/// .or(just('-').to(Op::Sub))
/// .or(just('*').to(Op::Mul))
/// .or(just('/').to(Op::Div));
///
/// assert_eq!(op.parse("+").into_result(), Ok(Op::Add));
/// assert_eq!(op.parse("/").into_result(), Ok(Op::Div));
/// ```
fn to<U: Clone>(self, to: U) -> To<Self, O, U>
where
Self: Sized,
{
To {
parser: self,
to,
phantom: EmptyPhantom::new(),
}
}
/// Label this parser with the given label.
///
/// Labelling a parser makes all errors generated by the parser refer to the label rather than any sub-elements
/// within the parser. For example, labelling a parser for an expression would yield "expected expression" errors
/// rather than "expected integer, string, binary op, etc." errors.
// TODO: Example
#[cfg(feature = "label")]
fn labelled<L>(self, label: L) -> Labelled<Self, L>
where
Self: Sized,
E::Error: LabelError<'a, I, L>,
{
Labelled {
parser: self,
label,
is_context: false,
}
}
/// Parse one thing and then another thing, yielding a tuple of the two outputs.
///
/// The output type of this parser is `(O, U)`, a combination of the outputs of both parsers.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let word = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_alphabetic())
/// .repeated()
/// .at_least(1)
/// .collect::<String>();
/// let two_words = word.then_ignore(just(' ')).then(word);
///
/// assert_eq!(two_words.parse("dog cat").into_result(), Ok(("dog".to_string(), "cat".to_string())));
/// assert!(two_words.parse("hedgehog").has_errors());
/// ```
fn then<U, B: Parser<'a, I, U, E>>(self, other: B) -> Then<Self, B, O, U, E>
where
Self: Sized,
{
Then {
parser_a: self,
parser_b: other,
phantom: EmptyPhantom::new(),
}
}
/// Parse one thing and then another thing, yielding only the output of the latter.
///
/// The output type of this parser is `U`, the same as the second parser.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let zeroes = any::<_, extra::Err<Simple<char>>>().filter(|c: &char| *c == '0').ignored().repeated().collect::<Vec<_>>();
/// let digits = any().filter(|c: &char| c.is_ascii_digit())
/// .repeated()
/// .collect::<String>();
/// let integer = zeroes
/// .ignore_then(digits)
/// .from_str()
/// .unwrapped();
///
/// assert_eq!(integer.parse("00064").into_result(), Ok(64));
/// assert_eq!(integer.parse("32").into_result(), Ok(32));
/// ```
fn ignore_then<U, B: Parser<'a, I, U, E>>(self, other: B) -> IgnoreThen<Self, B, O, E>
where
Self: Sized,
{
IgnoreThen {
parser_a: self,
parser_b: other,
phantom: EmptyPhantom::new(),
}
}
/// Parse one thing and then another thing, yielding only the output of the former.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let word = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_alphabetic())
/// .repeated()
/// .at_least(1)
/// .collect::<String>();
///
/// let punctuated = word
/// .then_ignore(just('!').or(just('?')).or_not());
///
/// let sentence = punctuated
/// .padded() // Allow for whitespace gaps
/// .repeated()
/// .collect::<Vec<_>>();
///
/// assert_eq!(
/// sentence.parse("hello! how are you?").into_result(),
/// Ok(vec![
/// "hello".to_string(),
/// "how".to_string(),
/// "are".to_string(),
/// "you".to_string(),
/// ]),
/// );
/// ```
fn then_ignore<U, B: Parser<'a, I, U, E>>(self, other: B) -> ThenIgnore<Self, B, U, E>
where
Self: Sized,
{
ThenIgnore {
parser_a: self,
parser_b: other,
phantom: EmptyPhantom::new(),
}
}
/// Parse input as part of a token-tree - using an input generated from within the current
/// input. In other words, this parser will attempt to create a *new* input stream from within
/// the one it is being run on, and the parser it was called on will be provided this *new* input.
/// By default, the original parser is expected to consume up to the end of the new stream. To
/// allow only consuming part of the stream, use [`Parser::lazy`] to ignore trailing tokens.
///
/// The provided parser `P` is expected to have both an input and output type which match the input
/// type of the parser it is called on. As an example, if the original parser takes an input of
/// `Stream<Iterator<Item = T>>`, `P` will be run first against that input, and is expected to
/// output a new `Stream<Iterator<Item = T>>` which the original parser will be run against.
///
/// The output of this parser is `O`, the output of the parser it is called on.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, util::MaybeRef, error::Simple};
/// #[derive(Debug, Clone, PartialEq)]
/// enum Token<'a> {
/// Struct,
/// Ident(&'a str),
/// Item(&'a str),
/// Group(Vec<Token<'a>>),
/// }
///
/// let group = select_ref! { Token::Group(g) => g.as_slice() };
///
/// let ident = select_ref! { Token::Ident(i) => *i };
///
/// let items = select_ref! { Token::Item(i) => *i }
/// .repeated()
/// .collect::<Vec<_>>()
/// .nested_in(group);
///
/// let struc = just::<_, _, extra::Err<Simple<_>>>(&Token::Struct)
/// .ignore_then(ident)
/// .then(items);
///
/// let tl = struc
/// .repeated()
/// .collect::<Vec<_>>();
///
/// let tokens = [
/// Token::Struct,
/// Token::Ident("foo"),
/// Token::Group(vec![
/// Token::Item("a"),
/// Token::Item("b"),
/// ]),
/// ];
///
/// assert_eq!(tl.parse(&tokens).into_result(), Ok(vec![("foo", vec!["a", "b"])]));
/// ```
fn nested_in<B: Parser<'a, I, I, E>>(self, other: B) -> NestedIn<Self, B, O, E>
where
Self: Sized,
I: 'a,
{
NestedIn {
parser_a: self,
parser_b: other,
phantom: EmptyPhantom::new(),
}
}
/// Parse one thing and then another thing, creating the second parser from the result of
/// the first. If you only have a couple cases to handle, prefer [`Parser::or`].
///
/// The output of this parser is `U`, the result of the second parser
///
/// Error recovery for this parser may be sub-optimal, as if the first parser succeeds on
/// recovery then the second produces an error, the primary error will point to the location in
/// the second parser which failed, ignoring that the first parser may be the root cause. There
/// may be other pathological errors cases as well.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let successor = just(b'\0').configure(|cfg, ctx: &u8| cfg.seq(*ctx + 1));
///
/// // A parser that parses a single letter and then its successor
/// let successive_letters = one_of::<_, _, extra::Err<Simple<u8>>>(b'a'..=b'z')
/// .then_with_ctx(successor);
///
/// assert_eq!(successive_letters.parse(b"ab").into_result(), Ok(b'b')); // 'b' follows 'a'
/// assert!(successive_letters.parse(b"ac").has_errors()); // 'c' does not follow 'a'
/// ```
fn then_with_ctx<U, P>(
self,
then: P,
) -> ThenWithCtx<Self, P, O, I, extra::Full<E::Error, E::State, O>>
where
Self: Sized,
O: 'a,
P: Parser<'a, I, U, extra::Full<E::Error, E::State, O>>,
{
ThenWithCtx {
parser: self,
then,
phantom: EmptyPhantom::new(),
}
}
/// Run the previous contextual parser with the provided context
///
/// ```
/// # use chumsky::prelude::*;
/// # use chumsky::primitive::JustCfg;
///
/// let generic = just(b'0').configure(|cfg, ctx: &u8| cfg.seq(*ctx));
///
/// let parse_a = just::<_, _, extra::Default>(b'b').ignore_then(generic.with_ctx::<u8>(b'a'));
/// let parse_b = just::<_, _, extra::Default>(b'a').ignore_then(generic.with_ctx(b'b'));
///
/// assert_eq!(parse_a.parse(b"ba" as &[_]).into_result(), Ok::<_, Vec<EmptyErr>>(b'a'));
/// assert!(parse_a.parse(b"bb").has_errors());
/// assert_eq!(parse_b.parse(b"ab" as &[_]).into_result(), Ok(b'b'));
/// assert!(parse_b.parse(b"aa").has_errors());
/// ```
fn with_ctx<Ctx>(self, ctx: Ctx) -> WithCtx<Self, Ctx>
where
Self: Sized,
Ctx: 'a + Clone,
{
WithCtx { parser: self, ctx }
}
/// Applies both parsers to the same position in the input, succeeding
/// only if both succeed. The returned value will be that of the first parser,
/// and the input will be at the end of the first parser if `and_is` succeeds.
///
/// The second parser is allowed to consume more or less input than the first parser,
/// but like its output, how much it consumes won't affect the final result.
///
/// The motivating use-case is in combination with [`Parser::not`], allowing a parser
/// to consume something only if it isn't also something like an escape sequence or a nested block.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
///
/// let escape = just("\\n").to('\n');
///
/// // C-style string literal
/// let string = none_of::<_, _, extra::Err<Simple<char>>>('"')
/// .and_is(escape.not())
/// .or(escape)
/// .repeated()
/// .collect::<String>()
/// .padded_by(just('"'));
///
/// assert_eq!(
/// string.parse("\"wxyz\"").into_result().as_deref(),
/// Ok("wxyz"),
/// );
/// assert_eq!(
/// string.parse("\"a\nb\"").into_result().as_deref(),
/// Ok("a\nb"),
/// );
/// ```
fn and_is<U, B>(self, other: B) -> AndIs<Self, B, U>
where
Self: Sized,
B: Parser<'a, I, U, E>,
{
AndIs {
parser_a: self,
parser_b: other,
phantom: EmptyPhantom::new(),
}
}
/// Parse the pattern surrounded by the given delimiters.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// // A LISP-style S-expression
/// #[derive(Debug, PartialEq)]
/// enum SExpr {
/// Ident(String),
/// Num(u64),
/// List(Vec<SExpr>),
/// }
///
/// let ident = any::<_, extra::Err<Simple<char>>>().filter(|c: &char| c.is_alphabetic())
/// .repeated()
/// .at_least(1)
/// .collect::<String>();
///
/// let num = text::int(10)
/// .from_str()
/// .unwrapped();
///
/// let s_expr = recursive(|s_expr| s_expr
/// .padded()
/// .repeated()
/// .collect::<Vec<_>>()
/// .map(SExpr::List)
/// .delimited_by(just('('), just(')'))
/// .or(ident.map(SExpr::Ident))
/// .or(num.map(SExpr::Num)));
///
/// // A valid input
/// assert_eq!(
/// s_expr.parse("(add (mul 42 3) 15)").into_result(),
/// Ok(SExpr::List(vec![
/// SExpr::Ident("add".to_string()),
/// SExpr::List(vec![
/// SExpr::Ident("mul".to_string()),
/// SExpr::Num(42),
/// SExpr::Num(3),
/// ]),
/// SExpr::Num(15),
/// ])),
/// );
/// ```
fn delimited_by<U, V, B, C>(self, start: B, end: C) -> DelimitedBy<Self, B, C, U, V>
where
Self: Sized,
B: Parser<'a, I, U, E>,
C: Parser<'a, I, V, E>,
{
DelimitedBy {
parser: self,
start,
end,
phantom: EmptyPhantom::new(),
}
}
/// Parse a pattern, but with an instance of another pattern on either end, yielding the output of the inner.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let ident = text::ident::<_, _, extra::Err<Simple<char>>>()
/// .padded_by(just('!'));
///
/// assert_eq!(ident.parse("!hello!").into_result(), Ok("hello"));
/// assert!(ident.parse("hello!").has_errors());
/// assert!(ident.parse("!hello").has_errors());
/// assert!(ident.parse("hello").has_errors());
/// ```
fn padded_by<U, B>(self, padding: B) -> PaddedBy<Self, B, U>
where
Self: Sized,
B: Parser<'a, I, U, E>,
{
PaddedBy {
parser: self,
padding,
phantom: EmptyPhantom::new(),
}
}
/// Parse one thing or, on failure, another thing.
///
/// The output of both parsers must be of the same type, because either output can be produced.
///
/// If both parser succeed, the output of the first parser is guaranteed to be prioritised over the output of the
/// second.
///
/// If both parsers produce errors, the combinator will attempt to select from or combine the errors to produce an
/// error that is most likely to be useful to a human attempting to understand the problem. The exact algorithm
/// used is left unspecified, and is not part of the crate's semver guarantees, although regressions in error
/// quality should be reported in the issue tracker of the main repository.
///
/// Please note that long chains of [`Parser::or`] combinators have been known to result in poor compilation times.
/// If you feel you are experiencing this, consider using [`choice`] instead.
///
/// The output type of this parser is `O`, the output of both parsers.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let op = just::<_, _, extra::Err<Simple<char>>>('+')
/// .or(just('-'))
/// .or(just('*'))
/// .or(just('/'));
///
/// assert_eq!(op.parse("+").into_result(), Ok('+'));
/// assert_eq!(op.parse("/").into_result(), Ok('/'));
/// assert!(op.parse("!").has_errors());
/// ```
fn or<B>(self, other: B) -> Or<Self, B>
where
Self: Sized,
B: Parser<'a, I, O, E>,
{
Or {
choice: choice((self, other)),
}
}
/// Attempt to parse something, but only if it exists.
///
/// If parsing of the pattern is successful, the output is `Some(_)`. Otherwise, the output is `None`.
///
/// The output type of this parser is `Option<O>`.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let word = any::<_, extra::Err<Simple<char>>>().filter(|c: &char| c.is_alphabetic())
/// .repeated()
/// .at_least(1)
/// .collect::<String>();
///
/// let word_or_question = word
/// .then(just('?').or_not());
///
/// assert_eq!(word_or_question.parse("hello?").into_result(), Ok(("hello".to_string(), Some('?'))));
/// assert_eq!(word_or_question.parse("wednesday").into_result(), Ok(("wednesday".to_string(), None)));
/// ```
fn or_not(self) -> OrNot<Self>
where
Self: Sized,
{
OrNot { parser: self }
}
/// Invert the result of the contained parser, failing if it succeeds and succeeding if it fails.
/// The output of this parser is always `()`, the unit type.
///
/// The motivating case for this is in combination with [`Parser::and_is`], allowing a parser
/// to consume something only if it isn't also something like an escape sequence or a nested block.
///
/// Caveats:
/// - The error message produced by `not` by default will likely be fairly unhelpful - it can
/// only tell the span that was wrong.
/// - If not careful, it's fairly easy to create non-intuitive behavior due to end-of-input
/// being a valid token for a parser to consume, and as most parsers fail at end of input,
/// `not` will succeed on it.
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
///
/// #[derive(Debug, PartialEq)]
/// enum Tree<'a> {
/// Text(&'a str),
/// Group(Vec<Self>),
/// }
///
/// // Arbitrary text, nested in a tree with { ... } delimiters
/// let tree = recursive::<_, _, extra::Err<Simple<char>>, _, _>(|tree| {
/// let text = any()
/// .and_is(one_of("{}").not())
/// .repeated()
/// .at_least(1)
/// .map_slice(Tree::Text);
///
/// let group = tree
/// .repeated()
/// .collect()
/// .delimited_by(just('{'), just('}'))
/// .map(Tree::Group);
///
/// text.or(group)
/// });
///
/// assert_eq!(
/// tree.parse("{abcd{efg{hijk}lmn{opq}rs}tuvwxyz}").into_result(),
/// Ok(Tree::Group(vec![
/// Tree::Text("abcd"),
/// Tree::Group(vec![
/// Tree::Text("efg"),
/// Tree::Group(vec![
/// Tree::Text("hijk"),
/// ]),
/// Tree::Text("lmn"),
/// Tree::Group(vec![
/// Tree::Text("opq"),
/// ]),
/// Tree::Text("rs"),
/// ]),
/// Tree::Text("tuvwxyz"),
/// ])),
/// );
/// ```
fn not(self) -> Not<Self, O>
where
Self: Sized,
{
Not {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Parse a pattern any number of times (including zero times).
///
/// Input is eagerly parsed. Be aware that the parser will accept no occurences of the pattern too. Consider using
/// [`Repeated::at_least`] instead if it better suits your use-case.
///
/// The output type of this parser can be any [`Container`].
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let num = any::<_, extra::Err<Simple<char>>>()
/// .filter(|c: &char| c.is_ascii_digit())
/// .repeated()
/// .at_least(1)
/// .collect::<String>()
/// .from_str()
/// .unwrapped();
///
/// let sum = num.clone()
/// .foldl(just('+').ignore_then(num).repeated(), |a, b| a + b);
///
/// assert_eq!(sum.parse("2+13+4+0+5").into_result(), Ok(24));
/// ```
#[cfg_attr(debug_assertions, track_caller)]
fn repeated(self) -> Repeated<Self, O, I, E>
where
Self: Sized,
{
Repeated {
parser: self,
at_least: 0,
at_most: !0,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Parse a pattern, separated by another, any number of times.
///
/// You can use [`SeparatedBy::allow_leading`] or [`SeparatedBy::allow_trailing`] to allow leading or trailing
/// separators.
///
/// The output type of this parser can be any [`Container`].
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let shopping = text::ident::<_, _, extra::Err<Simple<char>>>()
/// .padded()
/// .separated_by(just(','))
/// .collect::<Vec<_>>();
///
/// assert_eq!(shopping.parse("eggs").into_result(), Ok(vec!["eggs"]));
/// assert_eq!(shopping.parse("eggs, flour, milk").into_result(), Ok(vec!["eggs", "flour", "milk"]));
/// ```
///
/// See [`SeparatedBy::allow_leading`] and [`SeparatedBy::allow_trailing`] for more examples.
#[cfg_attr(debug_assertions, track_caller)]
fn separated_by<U, B>(self, separator: B) -> SeparatedBy<Self, B, O, U, I, E>
where
Self: Sized,
B: Parser<'a, I, U, E>,
{
SeparatedBy {
parser: self,
separator,
at_least: 0,
at_most: !0,
allow_leading: false,
allow_trailing: false,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Left-fold the output of the parser into a single value.
///
/// The output of the original parser must be of type `(A, impl IntoIterator<Item = B>)`.
///
/// The output type of this parser is `A`, the left-hand component of the original parser's output.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let int = text::int::<_, _, extra::Err<Simple<char>>>(10)
/// .from_str()
/// .unwrapped();
///
/// let sum = int
/// .clone()
/// .foldl(just('+').ignore_then(int).repeated(), |a, b| a + b);
///
/// assert_eq!(sum.parse("1+12+3+9").into_result(), Ok(25));
/// assert_eq!(sum.parse("6").into_result(), Ok(6));
/// ```
#[cfg_attr(debug_assertions, track_caller)]
fn foldl<B, F, OB>(self, other: B, f: F) -> Foldl<F, Self, B, OB, E>
where
F: Fn(O, OB) -> O,
B: IterParser<'a, I, OB, E>,
Self: Sized,
{
Foldl {
parser_a: self,
parser_b: other,
folder: f,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Left-fold the output of the parser into a single value, making use of the parser's state when doing so.
///
/// The output of the original parser must be of type `(A, impl IntoIterator<Item = B>)`.
///
/// The output type of this parser is `A`, the left-hand component of the original parser's output.
///
/// # Examples
///
/// ## General
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let int = text::int::<_, _, extra::Full<Simple<char>, i32, ()>>(10)
/// .from_str()
/// .unwrapped();
///
/// let sum = int
/// .clone()
/// .foldl_with_state(just('+').ignore_then(int).repeated(), |a, b, state| (a + b) * *state);
///
/// let mut multiplier = 2i32;
/// assert_eq!(sum.parse_with_state("1+12+3+9", &mut multiplier).into_result(), Ok(134));
/// assert_eq!(sum.parse_with_state("6", &mut multiplier).into_result(), Ok(6));
/// ```
///
/// ## Interning / Arena Allocation
///
/// This example assumes use of the `slotmap` crate for arena allocation.
///
/// ```
/// # use chumsky::prelude::*;
/// use slotmap::{new_key_type, SlotMap};
///
/// // Metadata type for node Ids for extra type safety
/// new_key_type! {
/// pub struct NodeId;
/// }
///
/// // AST nodes reference other nodes with `NodeId`s instead of containing boxed/owned values
/// #[derive(Copy, Clone, Debug, PartialEq)]
/// enum Expr {
/// Int(i32),
/// Add(NodeId, NodeId),
/// }
///
/// type NodeArena = SlotMap<NodeId, Expr>;
///
/// // Now, define our parser
/// let int = text::int::<&str, _, extra::Full<Simple<char>, NodeArena, ()>>(10)
/// .padded()
/// .map_with_state(|s, _, state: &mut NodeArena|
/// // Return the ID of the new integer node
/// state.insert(Expr::Int(s.parse().unwrap()))
/// );
///
/// let sum = int.foldl_with_state(
/// just('+').padded().ignore_then(int).repeated(),
/// |a: NodeId, b: NodeId, state: &mut NodeArena| {
/// // Inserting an item into the arena returns its ID
/// state.insert(Expr::Add(a, b))
/// }
/// );
///
/// // Test our parser
/// let mut arena = NodeArena::default();
/// let four_plus_eight = sum.parse_with_state("4 + 8", &mut arena).unwrap();
/// if let Expr::Add(a, b) = arena[four_plus_eight] {
/// assert_eq!(arena[a], Expr::Int(4));
/// assert_eq!(arena[b], Expr::Int(8));
/// } else {
/// panic!("Not an Expr::Add");
/// }
/// ```
#[cfg_attr(debug_assertions, track_caller)]
fn foldl_with_state<B, F, OB>(self, other: B, f: F) -> FoldlWithState<F, Self, B, OB, E>
where
F: Fn(O, OB, &mut E::State) -> O,
B: IterParser<'a, I, OB, E>,
Self: Sized,
{
FoldlWithState {
parser_a: self,
parser_b: other,
folder: f,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Parse a pattern. Afterwards, the input stream will be rewound to its original state, as if parsing had not
/// occurred.
///
/// This combinator is useful for cases in which you wish to avoid a parser accidentally consuming too much input,
/// causing later parsers to fail as a result. A typical use-case of this is that you want to parse something that
/// is not followed by something else.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let just_numbers = text::digits::<_, _, extra::Err<Simple<char>>>(10)
/// .slice()
/// .padded()
/// .then_ignore(none_of("+-*/").rewind())
/// .separated_by(just(','))
/// .collect::<Vec<_>>();
/// // 3 is not parsed because it's followed by '+'.
/// assert_eq!(just_numbers.lazy().parse("1, 2, 3 + 4").into_result(), Ok(vec!["1", "2"]));
/// ```
fn rewind(self) -> Rewind<Self>
where
Self: Sized,
{
Rewind { parser: self }
}
/// Make the parser lazy, such that it parses as much as it validly can and then finished successfully, leaving
/// trailing input untouched.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let digits = one_of::<_, _, extra::Err<Simple<char>>>('0'..='9')
/// .repeated()
/// .collect::<String>()
/// .lazy();
///
/// assert_eq!(digits.parse("12345abcde").into_result().as_deref(), Ok("12345"));
/// ```
fn lazy(self) -> Lazy<'a, Self, I, E>
where
Self: Sized,
I: ValueInput<'a>,
{
self.then_ignore(any().repeated())
}
/// Parse a pattern, ignoring any amount of whitespace both before and after the pattern.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let ident = text::ident::<_, _, extra::Err<Simple<char>>>().padded();
///
/// // A pattern with no whitespace surrounding it is accepted
/// assert_eq!(ident.parse("hello").into_result(), Ok("hello"));
/// // A pattern with arbitrary whitespace surrounding it is also accepted
/// assert_eq!(ident.parse(" \t \n \t world \t ").into_result(), Ok("world"));
/// ```
fn padded(self) -> Padded<Self>
where
Self: Sized,
I: Input<'a>,
I::Token: Char,
{
Padded { parser: self }
}
// /// Flatten a nested collection.
// ///
// /// This use-cases of this method are broadly similar to those of [`Iterator::flatten`].
// ///
// /// The output type of this parser is `Vec<T>`, where the original parser output was
// /// `impl IntoIterator<Item = impl IntoIterator<Item = T>>`.
// fn flatten<T, Inner>(self) -> Map<Self, O, fn(O) -> Vec<T>>
// where
// Self: Sized,
// O: IntoIterator<Item = Inner>,
// Inner: IntoIterator<Item = T>,
// {
// self.map(|xs| xs.into_iter().flat_map(|xs| xs.into_iter()).collect())
// }
/// Apply a fallback recovery strategy to this parser should it fail.
///
/// There is no silver bullet for error recovery, so this function allows you to specify one of several different
/// strategies at the location of your choice. Prefer an error recovery strategy that more precisely mirrors valid
/// syntax where possible to make error recovery more reliable.
///
/// Because chumsky is a [PEG](https://en.m.wikipedia.org/wiki/Parsing_expression_grammar) parser, which always
/// take the first successful parsing route through a grammar, recovering from an error may cause the parser to
/// erroneously miss alternative valid routes through the grammar that do not generate recoverable errors. If you
/// run into cases where valid syntax fails to parse without errors, this might be happening: consider removing
/// error recovery or switching to a more specific error recovery strategy.
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// #[derive(Debug, PartialEq)]
/// enum Expr<'a> {
/// Error,
/// Int(&'a str),
/// List(Vec<Expr<'a>>),
/// }
///
/// let recovery = just::<_, _, extra::Err<Simple<char>>>('[')
/// .then(none_of(']').repeated().then(just(']')));
///
/// let expr = recursive::<_, _, extra::Err<Simple<char>>, _, _>(|expr| expr
/// .separated_by(just(','))
/// .collect::<Vec<_>>()
/// .delimited_by(just('['), just(']'))
/// .map(Expr::List)
/// // If parsing a list expression fails, recover at the next delimiter, generating an error AST node
/// .recover_with(via_parser(recovery.map(|_| Expr::Error)))
/// .or(text::int(10).map(Expr::Int))
/// .padded());
///
/// assert!(expr.parse("five").has_errors()); // Text is not a valid expression in this language...
/// assert_eq!(
/// expr.parse("[1, 2, 3]").into_result(),
/// Ok(Expr::List(vec![Expr::Int("1"), Expr::Int("2"), Expr::Int("3")])),
/// ); // ...but lists and numbers are!
///
/// // This input has two syntax errors...
/// let res = expr.parse("[[1, two], [3, four]]");
/// // ...and error recovery allows us to catch both of them!
/// assert_eq!(res.errors().len(), 2);
/// // Additionally, the AST we get back still has useful information.
/// assert_eq!(res.output(), Some(&Expr::List(vec![Expr::Error, Expr::Error])));
/// ```
fn recover_with<S: Strategy<'a, I, O, E>>(self, strategy: S) -> RecoverWith<Self, S>
where
Self: Sized,
{
RecoverWith {
parser: self,
strategy,
}
}
/// Map the primary error of this parser to another value.
///
/// This function is most useful when using a custom error type, allowing you to augment errors according to
/// context.
///
/// The output type of this parser is `O`, the same as the original parser.
// TODO: Map E -> D, not E -> E
fn map_err<F>(self, f: F) -> MapErr<Self, F>
where
Self: Sized,
F: Fn(E::Error) -> E::Error,
{
MapErr {
parser: self,
mapper: f,
}
}
// /// Map the primary error of this parser to another value, making use of the span from the start of the attempted
// /// to the point at which the error was encountered.
// ///
// /// This function is useful for augmenting errors to allow them to display the span of the initial part of a
// /// pattern, for example to add a "while parsing" clause to your error messages.
// ///
// /// The output type of this parser is `O`, the same as the original parser.
// ///
// // TODO: Map E -> D, not E -> E
// fn map_err_with_span<F>(self, f: F) -> MapErrWithSpan<Self, F>
// where
// Self: Sized,
// F: Fn(E::Error, I::Span) -> E::Error,
// {
// MapErrWithSpan {
// parser: self,
// mapper: f,
// }
// }
/// Map the primary error of this parser to another value, making use of the parser state.
///
/// This function is useful for augmenting errors to allow them to include context in non context-free
/// languages, or provide contextual notes on possible causes.
///
/// The output type of this parser is `O`, the same as the original parser.
///
// TODO: Map E -> D, not E -> E
fn map_err_with_state<F>(self, f: F) -> MapErrWithState<Self, F>
where
Self: Sized,
F: Fn(E::Error, I::Span, &mut E::State) -> E::Error,
{
MapErrWithState {
parser: self,
mapper: f,
}
}
/// Validate an output, producing non-terminal errors if it does not fulfil certain criteria.
/// The errors will not immediately halt parsing on this path, but instead it will continue,
/// potentially emitting one or more other errors, only failing after the pattern has otherwise
/// successfully, or emitted another terminal error.
///
/// This function also permits mapping the output to a value of another type, similar to [`Parser::map`].
///
/// If you wish parsing of this pattern to halt when an error is generated instead of continuing, consider using
/// [`Parser::try_map`] instead.
///
/// The output type of this parser is `U`, the result of the validation closure.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let large_int = text::int::<_, _, extra::Err<Rich<char>>>(10)
/// .from_str()
/// .unwrapped()
/// .validate(|x: u32, span, emitter| {
/// if x < 256 { emitter.emit(Rich::custom(span, format!("{} must be 256 or higher.", x))) }
/// x
/// });
///
/// assert_eq!(large_int.parse("537").into_result(), Ok(537));
/// assert!(large_int.parse("243").into_result().is_err());
/// ```
///
/// To show the difference in behavior from [`Parser::try_map`]:
///
/// ```
/// # use chumsky::prelude::*;
/// # use chumsky::util::MaybeRef;
/// # use chumsky::error::Error;
/// // start with the same large_int validator
/// let large_int_val = text::int::<_, _, extra::Err<Rich<char>>>(10)
/// .from_str()
/// .unwrapped()
/// .validate(|x: u32, span, emitter| {
/// if x < 256 { emitter.emit(Rich::custom(span, format!("{} must be 256 or higher", x))) }
/// x
/// });
///
/// // A try_map version of the same parser
/// let large_int_tm = text::int::<_, _, extra::Err<Rich<char>>>(10)
/// .from_str()
/// .unwrapped()
/// .try_map(|x: u32, span| {
/// if x < 256 {
/// Err(Rich::custom(span, format!("{} must be 256 or higher", x)))
/// } else {
/// Ok(x)
/// }
/// });
///
/// // Parser that uses the validation version
/// let multi_step_val = large_int_val.then(text::ident().padded());
/// // Parser that uses the try_map version
/// let multi_step_tm = large_int_tm.then(text::ident().padded());
///
/// // On success, both parsers are equivalent
/// assert_eq!(
/// multi_step_val.parse("512 foo").into_result(),
/// Ok((512, "foo"))
/// );
///
/// assert_eq!(
/// multi_step_tm.parse("512 foo").into_result(),
/// Ok((512, "foo"))
/// );
///
/// // However, on failure, they may produce different errors:
/// assert_eq!(
/// multi_step_val.parse("100 2").into_result(),
/// Err(vec![
/// Rich::<char>::custom((0..3).into(), "100 must be 256 or higher"),
/// <Rich<char> as Error<&str>>::expected_found([], Some(MaybeRef::Val('2')), (4..5).into()),
/// ])
/// );
///
/// assert_eq!(
/// multi_step_tm.parse("100 2").into_result(),
/// Err(vec![Rich::<char>::custom((0..3).into(), "100 must be 256 or higher")])
/// );
/// ```
///
/// As is seen in the above example, validation doesn't prevent the emission of later errors in the
/// same parser, but still produces an error in the output.
///
fn validate<U, F>(self, f: F) -> Validate<Self, O, F>
where
Self: Sized,
F: Fn(O, I::Span, &mut Emitter<E::Error>) -> U,
{
Validate {
parser: self,
validator: f,
phantom: EmptyPhantom::new(),
}
}
// /// Map the primary error of this parser to a result. If the result is [`Ok`], the parser succeeds with that value.
// ///
// /// Note that, if the closure returns [`Err`], the parser will not consume any input.
// ///
// /// The output type of this parser is `U`, the [`Ok`] type of the result.
// fn or_else<F>(self, f: F) -> OrElse<Self, F>
// where
// Self: Sized,
// F: Fn(E::Error) -> Result<O, E::Error>,
// {
// OrElse {
// parser: self,
// or_else: f,
// }
// }
/// Attempt to convert the output of this parser into something else using Rust's [`FromStr`] trait.
///
/// This is most useful when wanting to convert literal values into their corresponding Rust type, such as when
/// parsing integers.
///
/// The output type of this parser is `Result<U, U::Err>`, the result of attempting to parse the output, `O`, into
/// the value `U`.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let uint64 = text::int::<_, _, extra::Err<Simple<char>>>(10)
/// .from_str::<u64>()
/// .unwrapped();
///
/// assert_eq!(uint64.parse("7").into_result(), Ok(7));
/// assert_eq!(uint64.parse("42").into_result(), Ok(42));
/// ```
#[allow(clippy::wrong_self_convention)]
fn from_str<U>(self) -> Map<Self, O, fn(O) -> Result<U, U::Err>>
where
Self: Sized,
U: FromStr,
O: AsRef<str>,
{
self.map(|o| o.as_ref().parse())
}
/// For parsers that produce a [`Result`] as their output, unwrap the result (panicking if an [`Err`] is
/// encountered).
///
/// In general, this method should be avoided except in cases where all possible that the parser might produce can
/// by parsed using [`FromStr`] without producing an error.
///
/// This combinator is not named `unwrap` to avoid confusion: it unwraps *during parsing*, not immediately.
///
/// The output type of this parser is `U`, the [`Ok`] value of the [`Result`].
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
/// let boolean = just::<_, _, extra::Err<Simple<char>>>("true")
/// .or(just("false"))
/// .from_str::<bool>()
/// .unwrapped(); // Cannot panic: the only possible outputs generated by the parser are "true" or "false"
///
/// assert_eq!(boolean.parse("true").into_result(), Ok(true));
/// assert_eq!(boolean.parse("false").into_result(), Ok(false));
/// // Does not panic, because the original parser only accepts "true" or "false"
/// assert!(boolean.parse("42").has_errors());
/// ```
#[track_caller]
fn unwrapped(self) -> Unwrapped<Self, O>
where
Self: Sized,
{
Unwrapped {
parser: self,
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Box the parser, yielding a parser that performs parsing through dynamic dispatch.
///
/// Boxing a parser might be useful for:
///
/// - Dynamically building up parsers at run-time
///
/// - Improving compilation times (Rust can struggle to compile code containing very long types)
///
/// - Passing a parser over an FFI boundary
///
/// - Getting around compiler implementation problems with long types such as
/// [this](https://github.com/rust-lang/rust/issues/54540).
///
/// - Places where you need to name the type of a parser
///
/// Boxing a parser is broadly equivalent to boxing other combinators via dynamic dispatch, such as [`Iterator`].
///
/// The output type of this parser is `O`, the same as the original parser.
///
/// # Examples
///
/// When not using `boxed`, the following patterns are either impossible or very difficult to express:
///
/// ```compile_fail
/// # use chumsky::prelude::*;
///
/// pub trait Parseable: Sized {
/// type Parser<'a>: Parser<'a, &'a str, Self>;
///
/// fn parser<'a>() -> Self::Parser<'a>;
/// }
///
/// impl Parseable for i32 {
/// // We *can* write this type, but it will be very impractical, and change on any alterations
/// // to the implementation
/// type Parser<'a> = ???;
///
/// fn parser<'a>() -> Self::Parser<'a> {
/// todo()
/// }
/// }
/// ```
///
/// ```compile_fail
/// # use chumsky::prelude::*;
/// # fn user_input<'a>() -> impl IntoIterator<Item = impl Parser<'a, &'a str, char>> { [just('b')] }
///
/// let user_input = user_input();
///
/// let mut parser = just('a');
/// for i in user_input {
/// // Doesn't work due to type mismatch - since every combinator creates a unique type
/// parser = parser.or(i);
/// }
///
/// let parser = parser.then(just('z'));
/// let _ = parser.parse("b").into_result();
/// ```
///
/// However, with `boxed`, we can express them by making the parsers all share a common type:
///
/// ```
/// use chumsky::prelude::*;
///
/// pub trait Parseable: Sized {
/// fn parser<'a>() -> Boxed<'a, 'a, &'a str, Self, extra::Default>;
/// }
///
/// impl Parseable for i32 {
/// fn parser<'a>() -> Boxed<'a, 'a, &'a str, Self, extra::Default> {
/// todo().boxed()
/// }
/// }
/// ```
///
/// ```
/// # use chumsky::prelude::*;
/// # fn user_input<'a>() -> impl IntoIterator<Item = impl Parser<'a, &'a str, char>> { [just('b'), just('c')] }
/// let user_input = user_input();
/// let mut parser = just('a').boxed();
/// for i in user_input {
/// // Doesn't work due to type mismatch - since every combinator creates a unique type
/// parser = parser.or(i).boxed();
/// }
/// let parser = parser.then(just('z'));
/// parser.parse("az").into_result().unwrap();
/// ```
///
fn boxed<'b>(self) -> Boxed<'a, 'b, I, O, E>
where
Self: MaybeSync + Sized + 'a + 'b,
{
ParserSealed::boxed(self)
}
}
#[cfg(feature = "nightly")]
impl<'a, I, O, E> ParserSealed<'a, I, O, E> for !
where
I: Input<'a>,
E: ParserExtra<'a, I>,
{
fn go<M: Mode>(&self, _inp: &mut InputRef<'a, '_, I, E>) -> PResult<M, O> {
*self
}
go_extra!(O);
}
/// A [`Parser`] that can be configured with runtime context. This allows for context-sensitive parsing
/// of input. Note that chumsky only supports 'left'-sensitive parsing, where the context for a parser
/// is derived from earlier in the input.
///
/// Chumsky distinguishes 'state' from 'context'. State is not able to change what input a parser
/// accepts, but may be used to change the contents of the type it emits. In this way state is expected
/// to be idempotent - combinators such as [`Parser::map_with_state`] are allowed to not call the
/// provided closure at all if they don't emit any output. Context and configuration, on the other hand,
/// is used to change what kind of input a parser may accept, and thus must always be evaluated. Context
/// isn't usable in any map combinator however - while it may affect accepted input, it is not expected
/// to change the final result outside of how it changes what the parser itself returns.
///
/// Not all parsers currently support configuration. If you feel like you need a parser to be configurable
/// and it isn't currently, please open an issue on the issue tracker of the main repository.
pub trait ConfigParser<'a, I, O, E>: ConfigParserSealed<'a, I, O, E>
where
I: Input<'a>,
E: ParserExtra<'a, I>,
{
/// A combinator that allows configuration of the parser from the current context. Context
/// is most often derived from [`Parser::then_with_ctx`] or [`map_ctx`], and is how chumsky
/// supports parsing things such as indentation-sensitive grammars.
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
///
/// let int = text::int::<_, _, extra::Err<Rich<char>>>(10)
/// .from_str()
/// .unwrapped();
///
/// // By default, accepts any number of items
/// let item = text::ident()
/// .padded()
/// .repeated();
///
/// // With configuration, we can declare an exact number of items based on a prefix length
/// let len_prefixed_arr = int
/// .then_with_ctx(item.configure(|repeat, ctx| repeat.exactly(*ctx)).collect::<Vec<_>>());
///
/// assert_eq!(
/// len_prefixed_arr.parse("2 foo bar").into_result(),
/// Ok(vec!["foo", "bar"]),
/// );
///
/// assert_eq!(
/// len_prefixed_arr.parse("0").into_result(),
/// Ok(vec![]),
/// );
///
/// len_prefixed_arr.parse("3 foo bar baz bam").into_result().unwrap_err();
/// len_prefixed_arr.parse("3 foo bar").into_result().unwrap_err();
/// ```
fn configure<F>(self, cfg: F) -> Configure<Self, F>
where
Self: Sized,
F: Fn(Self::Config, &E::Context) -> Self::Config,
{
Configure { parser: self, cfg }
}
}
/// An iterator that wraps an iterable parser. See [`IterParser::parse_iter`].
#[cfg(test)]
pub struct ParserIter<'a, 'iter, P: IterParser<'a, I, O, E>, I: Input<'a>, O, E: ParserExtra<'a, I>>
{
parser: P,
offset: I::Offset,
own: InputOwn<'a, 'iter, I, E>,
iter_state: Option<P::IterState<Emit>>,
#[allow(dead_code)]
phantom: EmptyPhantom<(&'a (), O)>,
}
#[cfg(test)]
impl<'a, 'iter, P, I: Input<'a>, O, E: ParserExtra<'a, I>> Iterator
for ParserIter<'a, 'iter, P, I, O, E>
where
P: IterParser<'a, I, O, E>,
{
type Item = O;
fn next(&mut self) -> Option<Self::Item> {
let mut inp = self.own.as_ref_at(self.offset);
let parser = &self.parser;
let iter_state = match &mut self.iter_state {
Some(state) => state,
None => {
let state = parser.make_iter::<Emit>(&mut inp).ok()?;
self.iter_state = Some(state);
self.iter_state.as_mut().unwrap()
}
};
let res = parser.next::<Emit>(&mut inp, iter_state);
self.offset = inp.offset;
res.ok().and_then(|res| res)
}
}
/// An iterable equivalent of [`Parser`], i.e: a parser that generates a sequence of outputs.
pub trait IterParser<'a, I, O, E = extra::Default>: IterParserSealed<'a, I, O, E>
where
I: Input<'a>,
E: ParserExtra<'a, I>,
{
/// Collect this iterable parser into a [`Container`].
///
/// This is commonly useful for collecting parsers that output many values into containers of various kinds:
/// [`Vec`]s, [`String`]s, or even [`HashMap`]s. This method is analogous to [`Iterator::collect`].
///
/// The output type of this iterable parser is `C`, the type being collected into.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let word = any::<_, extra::Err<Simple<char>>>().filter(|c: &char| c.is_alphabetic()) // This parser produces an output of `char`
/// .repeated() // This parser is iterable (i.e: implements `IterParser`)
/// .collect::<String>(); // We collect the `char`s into a `String`
///
/// assert_eq!(word.parse("hello").into_result(), Ok("hello".to_string()));
/// ```
#[cfg_attr(debug_assertions, track_caller)]
fn collect<C: Container<O>>(self) -> Collect<Self, O, C>
where
Self: Sized,
{
Collect {
parser: self,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Collect this iterable parser into a [`ContainerExactly`].
///
/// This is useful for situations where the number of items to consume is statically known.
/// A common use-case is collecting into an array.
///
/// The output type of this iterable parser if `C`, the type being collected into.
///
/// # Exmaples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let three_digit = any::<_, extra::Err<Simple<char>>>().filter(|c: &char| c.is_numeric())
/// .repeated()
/// .collect_exactly::<[_; 3]>();
///
/// assert_eq!(three_digit.parse("123").into_result(), Ok(['1', '2', '3']));
/// assert!(three_digit.parse("12").into_result().is_err());
/// assert!(three_digit.parse("1234").into_result().is_err());
/// ```
fn collect_exactly<C: ContainerExactly<O>>(self) -> CollectExactly<Self, O, C>
where
Self: Sized,
{
CollectExactly {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Collect this iterable parser into a [`usize`], outputting the number of elements that were parsed.
///
/// This is sugar for [`.collect::<usize>()`](Self::collect).
///
/// # Examples
///
/// ```
/// # use chumsky::prelude::*;
///
/// // Counts how many chess squares are in the input.
/// let squares = one_of::<_, _, extra::Err<Simple<char>>>('a'..='z').then(one_of('1'..='8')).padded().repeated().count();
///
/// assert_eq!(squares.parse("a1 b2 c3").into_result(), Ok(3));
/// assert_eq!(squares.parse("e5 e7 c6 c7 f6 d5 e6 d7 e4 c5 d6 c4 b6 f5").into_result(), Ok(14));
/// assert_eq!(squares.parse("").into_result(), Ok(0));
/// ```
fn count(self) -> Collect<Self, O, usize>
where
Self: Sized,
{
self.collect()
}
/// Enumerate outputs of this iterable parser.
///
/// This function behaves in a similar way to [`Iterator::enumerate`].
///
/// The output type of this iterable parser is `(usize, O)`.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let word = text::ident::<_, _, extra::Err<Simple<char>>>()
/// .padded()
/// .repeated() // This parser is iterable (i.e: implements `IterParser`)
/// .enumerate()
/// .collect::<Vec<(usize, &str)>>();
///
/// assert_eq!(word.parse("hello world").into_result(), Ok(vec![(0, "hello"), (1, "world")]));
/// ```
fn enumerate(self) -> Enumerate<Self, O>
where
Self: Sized,
{
Enumerate {
parser: self,
phantom: EmptyPhantom::new(),
}
}
/// Right-fold the output of the parser into a single value.
///
/// The output of the original parser must be of type `(impl IntoIterator<Item = A>, B)`. Because right-folds work
/// backwards, the iterator must implement [`DoubleEndedIterator`] so that it can be reversed.
///
/// The output type of this iterable parser is `B`, the right-hand component of the original parser's output.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let int = text::int::<_, _, extra::Err<Simple<char>>>(10)
/// .from_str()
/// .unwrapped();
///
/// let signed = just('+').to(1)
/// .or(just('-').to(-1))
/// .repeated()
/// .foldr(int, |a, b| a * b);
///
/// assert_eq!(signed.parse("3").into_result(), Ok(3));
/// assert_eq!(signed.parse("-17").into_result(), Ok(-17));
/// assert_eq!(signed.parse("--+-+-5").into_result(), Ok(5));
/// ```
#[cfg_attr(debug_assertions, track_caller)]
fn foldr<B, F, OA>(self, other: B, f: F) -> Foldr<F, Self, B, O, E>
where
F: Fn(O, OA) -> OA,
B: Parser<'a, I, OA, E>,
Self: Sized,
{
Foldr {
parser_a: self,
parser_b: other,
folder: f,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Right-fold the output of the parser into a single value, making use of the parser's state when doing so.
///
/// The output of the original parser must be of type `(impl IntoIterator<Item = A>, B)`. Because right-folds work
/// backwards, the iterator must implement [`DoubleEndedIterator`] so that it can be reversed.
///
/// The output type of this parser is `B`, the right-hand component of the original parser's output.
///
/// # Examples
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// let int = text::int::<_, _, extra::Full<Simple<char>, i32, ()>>(10)
/// .from_str()
/// .unwrapped();
///
/// let signed = just('+').to(1)
/// .or(just('-').to(-1))
/// .repeated()
/// .foldr_with_state(int, |a, b, state| {
/// (*state) += 1;
/// (a * b)
/// });
///
/// // Test our parser
/// let mut folds = 0i32;
/// assert_eq!(signed.parse_with_state("3", &mut folds).into_result(), Ok(3));
/// assert_eq!(signed.parse_with_state("-17", &mut folds).into_result(), Ok(-17));
/// assert_eq!(signed.parse_with_state("--+-+-5", &mut folds).into_result(), Ok(5));
/// ```
///
///
#[cfg_attr(debug_assertions, track_caller)]
fn foldr_with_state<B, F, OA>(self, other: B, f: F) -> FoldrWithState<F, Self, B, OA, E>
where
F: Fn(O, OA, &mut E::State) -> OA,
B: Parser<'a, I, OA, E>,
Self: Sized,
{
FoldrWithState {
parser_a: self,
parser_b: other,
folder: f,
#[cfg(debug_assertions)]
location: *Location::caller(),
phantom: EmptyPhantom::new(),
}
}
/// Create an iterator over the outputs generated by an iterable parser.
///
/// Warning: Trailing errors will be ignored
// TODO: Stabilize once error handling is properly decided on
#[cfg(test)]
fn parse_iter(self, input: I) -> ParseResult<ParserIter<'a, 'static, Self, I, O, E>, E::Error>
where
Self: IterParser<'a, I, O, E> + Sized,
E::State: Default,
E::Context: Default,
{
ParseResult::new(
Some(ParserIter {
parser: self,
offset: input.start(),
own: InputOwn::new(input),
iter_state: None,
phantom: EmptyPhantom::new(),
}),
Vec::new(),
)
}
/// Create an iterator over the outputs generated by an iterable parser with the given parser state.
///
/// Warning: Trailing errors will be ignored
// TODO: Stabilize once error handling is properly decided on
#[cfg(test)]
fn parse_iter_with_state<'parse>(
self,
input: I,
state: &'parse mut E::State,
) -> ParseResult<ParserIter<'a, 'parse, Self, I, O, E>, E::Error>
where
Self: IterParser<'a, I, O, E> + Sized,
E::Context: Default,
{
ParseResult::new(
Some(ParserIter {
parser: self,
offset: input.start(),
own: InputOwn::new_state(input, state),
iter_state: None,
phantom: EmptyPhantom::new(),
}),
Vec::new(),
)
}
}
/// An iterable equivalent of [`ConfigParser`], i.e: a parser that generates a sequence of outputs and
/// can be configured at runtime.
pub trait ConfigIterParser<'a, I, O, E = extra::Default>:
ConfigIterParserSealed<'a, I, O, E>
where
I: Input<'a>,
E: ParserExtra<'a, I>,
{
/// A combinator that allows configuration of the parser from the current context
fn configure<F>(self, cfg: F) -> IterConfigure<Self, F, O>
where
Self: Sized,
F: Fn(Self::Config, &E::Context) -> Self::Config,
{
IterConfigure {
parser: self,
cfg,
phantom: EmptyPhantom::new(),
}
}
/// A combinator that allows fallible configuration of the parser from the current context -
/// if an error is returned, parsing fails.
fn try_configure<F>(self, cfg: F) -> TryIterConfigure<Self, F, O>
where
Self: Sized,
F: Fn(Self::Config, &E::Context, I::Span) -> Result<Self::Config, E::Error>,
{
TryIterConfigure {
parser: self,
cfg,
phantom: EmptyPhantom::new(),
}
}
}
/// See [`Parser::boxed`].
///
/// Due to current implementation details, the inner value is not, in fact, a [`Box`], but is an [`Rc`] to facilitate
/// efficient cloning. This is likely to change in the future. Unlike [`Box`], [`Rc`] has no size guarantees: although
/// it is *currently* the same size as a raw pointer.
// TODO: Don't use an Rc
pub struct Boxed<'a, 'b, I: Input<'a>, O, E: ParserExtra<'a, I>> {
inner: RefC<DynParser<'a, 'b, I, O, E>>,
}
impl<'a, 'b, I: Input<'a>, O, E: ParserExtra<'a, I>> Clone for Boxed<'a, 'b, I, O, E> {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
}
}
}
impl<'a, 'b, I, O, E> ParserSealed<'a, I, O, E> for Boxed<'a, 'b, I, O, E>
where
I: Input<'a>,
E: ParserExtra<'a, I>,
{
fn go<M: Mode>(&self, inp: &mut InputRef<'a, '_, I, E>) -> PResult<M, O> {
M::invoke(&*self.inner, inp)
}
fn boxed<'c>(self) -> Boxed<'a, 'c, I, O, E>
where
Self: MaybeSync + Sized + 'a + 'c,
{
// Never double-box parsers
self
}
go_extra!(O);
}
/// Create a parser that selects one or more input patterns and map them to an output value.
///
/// This is most useful when turning the tokens of a previous compilation pass (such as lexing) into data that can be
/// used for parsing, although it can also generally be used to select inputs and map them to outputs. Any unmapped
/// input patterns will become syntax errors, just as with [`Parser::filter`].
///
/// Internally, [`select!`] is very similar to [`Parser::try_map`] and thinking of it as such might make it less
/// confusing.
///
/// `select!` requires that tokens implement [`Clone`].
///
/// If you're trying to access tokens referentially (for the sake of nested parsing, or simply because you want to
/// avoid cloning the token), see [`select_ref!`].
///
/// # Examples
///
/// `select!` is syntactically similar to a `match` expression and has support for
/// [pattern guards](https://doc.rust-lang.org/reference/expressions/match-expr.html#match-guards):
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// #[derive(Clone)]
/// enum Token<'a> { Ident(&'a str) }
///
/// enum Expr<'a> { Local(&'a str), Null, True, False }
///
/// # let _: chumsky::primitive::Select<_, &[Token], Expr, extra::Default> =
/// select! {
/// Token::Ident(s) if s == "true" => Expr::True,
/// Token::Ident(s) if s == "false" => Expr::False,
/// Token::Ident(s) if s == "null" => Expr::Null,
/// Token::Ident(s) => Expr::Local(s),
/// }
/// # ;
/// ```
///
/// If you require access to the token's span, you may add an argument after a pattern to gain access to it:
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// #[derive(Clone)]
/// enum Token<'a> { Num(f64), Str(&'a str) }
///
/// enum Expr<'a> { Num(f64), Str(&'a str) }
///
/// type Span = SimpleSpan<usize>;
///
/// impl<'a> Expr<'a> {
/// fn spanned(self, span: Span) -> (Self, Span) { (self, span) }
/// }
///
/// # let _: chumsky::primitive::Select<_, &[Token], (Expr, Span), extra::Default> =
/// select! {
/// Token::Num(x) = span => Expr::Num(x).spanned(span),
/// Token::Str(s) = span => Expr::Str(s).spanned(span),
/// }
/// # ;
/// ```
///
/// ```
/// # use chumsky::{prelude::*, error::Simple};
/// // The type of our parser's input (tokens like this might be emitted by your compiler's lexer)
/// #[derive(Clone, Debug, PartialEq)]
/// enum Token {
/// Num(u64),
/// Bool(bool),
/// LParen,
/// RParen,
/// }
///
/// // The type of our parser's output, a syntax tree
/// #[derive(Debug, PartialEq)]
/// enum Ast {
/// Num(u64),
/// Bool(bool),
/// List(Vec<Ast>),
/// }
///
/// // Our parser converts a stream of input tokens into an AST
/// // `select!` is used to deconstruct some of the tokens and turn them into AST nodes
/// let ast = recursive::<_, _, extra::Err<Simple<Token>>, _, _>(|ast| {
/// let literal = select! {
/// Token::Num(x) => Ast::Num(x),
/// Token::Bool(x) => Ast::Bool(x),
/// };
///
/// literal.or(ast
/// .repeated()
/// .collect()
/// .delimited_by(just(Token::LParen), just(Token::RParen))
/// .map(Ast::List))
/// });
///
/// use Token::*;
/// assert_eq!(
/// ast.parse(&[LParen, Num(5), LParen, Bool(false), Num(42), RParen, RParen]).into_result(),
/// Ok(Ast::List(vec![
/// Ast::Num(5),
/// Ast::List(vec![
/// Ast::Bool(false),
/// Ast::Num(42),
/// ]),
/// ])),
/// );
/// ```
#[macro_export]
macro_rules! select {
($($p:pat $(= $span:ident)? $(if $guard:expr)? $(=> $out:expr)?),+ $(,)?) => ({
$crate::primitive::select(
move |x, span| match x {
$($p $(if $guard)? => ::core::option::Option::Some({ $(let $span = span;)? () $(;$out)? })),+,
_ => ::core::option::Option::None,
}
)
});
}
/// A version of [`select!`] that selects on token by reference instead of by value.
///
/// Useful if you want to extract elements from a token in a zero-copy manner.
///
/// `select_ref` requires that the parser input implements [`BorrowInput`].
#[macro_export]
macro_rules! select_ref {
($($p:pat $(= $span:ident)? $(if $guard:expr)? $(=> $out:expr)?),+ $(,)?) => ({
$crate::primitive::select_ref(
move |x, span| match x {
$($p $(if $guard)? => ::core::option::Option::Some({ $(let $span = span;)? () $(;$out)? })),+,
_ => ::core::option::Option::None,
}
)
});
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn zero_copy() {
use self::input::WithContext;
use self::prelude::*;
#[derive(PartialEq, Debug)]
enum Token<'a> {
Ident(&'a str),
String(&'a str),
}
type FileId = u32;
type Span = (FileId, SimpleSpan<usize>);
fn parser<'a>() -> impl Parser<'a, WithContext<FileId, &'a str>, [(Span, Token<'a>); 6]> {
let ident = any()
.filter(|c: &char| c.is_alphanumeric())
.repeated()
.at_least(1)
.map_slice(Token::Ident);
let string = just('"')
.then(any().filter(|c: &char| *c != '"').repeated())
.then(just('"'))
.map_slice(Token::String);
ident
.or(string)
.map_with_span(|token, span| (span, token))
.padded()
.repeated()
.collect_exactly()
}
assert_eq!(
parser()
.parse(r#"hello "world" these are "test" tokens"#.with_context(42))
.into_result(),
Ok([
((42, (0..5).into()), Token::Ident("hello")),
((42, (6..13).into()), Token::String("\"world\"")),
((42, (14..19).into()), Token::Ident("these")),
((42, (20..23).into()), Token::Ident("are")),
((42, (24..30).into()), Token::String("\"test\"")),
((42, (31..37).into()), Token::Ident("tokens")),
]),
);
}
#[test]
fn zero_copy_repetition() {
use self::prelude::*;
fn parser<'a>() -> impl Parser<'a, &'a str, Vec<u64>> {
any()
.filter(|c: &char| c.is_ascii_digit())
.repeated()
.at_least(1)
.at_most(3)
.map_slice(|b: &str| b.parse::<u64>().unwrap())
.padded()
.separated_by(just(',').padded())
.allow_trailing()
.collect()
.delimited_by(just('['), just(']'))
}
assert_eq!(
parser().parse("[122 , 23,43, 4, ]").into_result(),
Ok(vec![122, 23, 43, 4]),
);
assert_eq!(
parser().parse("[0, 3, 6, 900,120]").into_result(),
Ok(vec![0, 3, 6, 900, 120]),
);
assert_eq!(
parser().parse("[200,400,50 ,0,0, ]").into_result(),
Ok(vec![200, 400, 50, 0, 0]),
);
assert!(parser().parse("[1234,123,12,1]").has_errors());
assert!(parser().parse("[,0, 1, 456]").has_errors());
assert!(parser().parse("[3, 4, 5, 67 89,]").has_errors());
}
#[test]
fn zero_copy_group() {
use self::prelude::*;
fn parser<'a>() -> impl Parser<'a, &'a str, (&'a str, u64, char)> {
group((
any()
.filter(|c: &char| c.is_ascii_alphabetic())
.repeated()
.at_least(1)
.slice()
.padded(),
any()
.filter(|c: &char| c.is_ascii_digit())
.repeated()
.at_least(1)
.map_slice(|s: &str| s.parse::<u64>().unwrap())
.padded(),
any().filter(|c: &char| !c.is_whitespace()).padded(),
))
}
assert_eq!(
parser().parse("abc 123 [").into_result(),
Ok(("abc", 123, '[')),
);
assert_eq!(
parser().parse("among3d").into_result(),
Ok(("among", 3, 'd')),
);
assert_eq!(
parser().parse("cba321,").into_result(),
Ok(("cba", 321, ',')),
);
assert!(parser().parse("abc 123 ").has_errors());
assert!(parser().parse("123abc ]").has_errors());
assert!(parser().parse("and one &").has_errors());
}
#[test]
fn zero_copy_group_array() {
use self::prelude::*;
fn parser<'a>() -> impl Parser<'a, &'a str, [char; 3]> {
group([just('a'), just('b'), just('c')])
}
assert_eq!(parser().parse("abc").into_result(), Ok(['a', 'b', 'c']));
assert!(parser().parse("abd").has_errors());
}
#[test]
fn unicode_str() {
let input = "🄯🄚🄐🝋🄂🬯🈦g🍩🕔🈳2🬙🨞🅢🭳🎅h🧿🏩k🠡🀔🤟📵🤿🝜🙘5🠻🠓";
let mut own = InputOwn::<_, extra::Default>::new(input);
let mut inp = own.as_ref_start();
while let Some(c) = inp.next() {
drop(c);
}
}
#[test]
fn iter() {
use self::prelude::*;
fn parser<'a>() -> impl IterParser<'a, &'a str, char> {
any().repeated()
}
let mut chars = String::new();
for c in parser().parse_iter(&"abcdefg").into_result().unwrap() {
chars.push(c);
}
assert_eq!(&chars, "abcdefg");
}
#[test]
#[cfg(feature = "memoization")]
fn exponential() {
use self::prelude::*;
fn parser<'a>() -> impl Parser<'a, &'a str, String> {
recursive(|expr| {
let atom = any()
.filter(|c: &char| c.is_alphabetic())
.repeated()
.at_least(1)
.collect()
.or(expr.delimited_by(just('('), just(')')));
atom.clone()
.then_ignore(just('+'))
.then(atom.clone())
.map(|(a, b)| format!("{}{}", a, b))
.memoised()
.or(atom)
})
.then_ignore(end())
}
parser()
.parse("((((((((((((((((((((((((((((((a+b))))))))))))))))))))))))))))))")
.into_result()
.unwrap();
}
#[test]
#[cfg(feature = "memoization")]
fn left_recursive() {
use self::prelude::*;
fn parser<'a>() -> impl Parser<'a, &'a str, String> {
recursive(|expr| {
let atom = any()
.filter(|c: &char| c.is_alphabetic())
.repeated()
.at_least(1)
.collect();
let sum = expr
.clone()
.then_ignore(just('+'))
.then(expr)
.map(|(a, b)| format!("{}{}", a, b))
.memoised();
sum.or(atom)
})
.then_ignore(end())
}
assert_eq!(parser().parse("a+b+c").into_result().unwrap(), "abc");
}
#[cfg(debug_assertions)]
mod debug_asserts {
use super::prelude::*;
// TODO panic when left recursive parser is detected
// #[test]
// #[should_panic]
// fn debug_assert_left_recursive() {
// recursive(|expr| {
// let atom = any::<&str, extra::Default>()
// .filter(|c: &char| c.is_alphabetic())
// .repeated()
// .at_least(1)
// .collect();
// let sum = expr
// .clone()
// .then_ignore(just('+'))
// .then(expr)
// .map(|(a, b)| format!("{}{}", a, b));
// sum.or(atom)
// })
// .then_ignore(end())
// .parse("a+b+c");
// }
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_collect() {
empty::<&str, extra::Default>()
.to(())
.repeated()
.collect::<()>()
.parse("a+b+c")
.unwrap();
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_separated_by() {
empty::<&str, extra::Default>()
.to(())
.separated_by(empty())
.collect::<()>()
.parse("a+b+c");
}
#[test]
fn debug_assert_separated_by2() {
assert_eq!(
empty::<&str, extra::Default>()
.to(())
.separated_by(just(','))
.count()
.parse(",")
.unwrap(),
2
);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_foldl() {
assert_eq!(
empty::<&str, extra::Default>()
.to(1)
.foldl(empty().repeated(), |n, ()| n + 1)
.parse("a+b+c")
.unwrap(),
3
);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_foldl_with_state() {
let mut state = 100;
empty::<&str, extra::Full<EmptyErr, i32, ()>>()
.foldl_with_state(empty().to(()).repeated(), |_, _, _| ())
.parse_with_state("a+b+c", &mut state);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_foldr() {
empty::<&str, extra::Default>()
.to(())
.repeated()
.foldr(empty(), |_, _| ())
.parse("a+b+c");
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_foldr_with_state() {
empty::<&str, extra::Default>()
.to(())
.repeated()
.foldr_with_state(empty(), |_, _, _| ())
.parse_with_state("a+b+c", &mut ());
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn debug_assert_repeated() {
empty::<&str, extra::Default>()
.to(())
.repeated()
.parse("a+b+c");
}
// TODO what about IterConfigure and TryIterConfigure?
}
#[test]
#[should_panic]
fn recursive_define_twice() {
let mut expr = Recursive::declare();
expr.define({
let atom = any::<&str, extra::Default>()
.filter(|c: &char| c.is_alphabetic())
.repeated()
.at_least(1)
.collect();
let sum = expr
.clone()
.then_ignore(just('+'))
.then(expr.clone())
.map(|(a, b)| format!("{}{}", a, b));
sum.or(atom)
});
expr.define(expr.clone());
expr.then_ignore(end()).parse("a+b+c");
}
#[test]
#[should_panic]
fn todo_err() {
let expr = todo::<&str, String, extra::Default>();
expr.then_ignore(end()).parse("a+b+c");
}
}