time_plot

Function time_plot 

Source
pub fn time_plot(
    file_name: &str,
    measurements: Measurements,
    config: &PlotConfig<'_>,
)
Expand description

Plots the data from the Measurements using plotters. The plot is saved to the file specified by file_name, the file created will be an SVG file.

ยงArguments

  • file_name - The name of the file to save the plot to
  • measurements - The measurements to plot
  • builder - The builder that was used to generate the measurements
Examples found in repository?
examples/sorting/main.rs (line 49)
17fn main() {
18    // Create a distribution for the length of the vectors
19    // Here we use an exponential distribution with a minimum of 1000 and a maximum of 500_000
20    let length_distribution = Exponential::new(1000..=500_000);
21
22    // Create the builder for the vectors
23    let vector_builder = InputBuilder::new(length_distribution, ());
24
25    // Build the vectors
26    // Here we build 2000 vectors, 10 of each length
27    let mut vectors = vector_builder.build_with_repetitions(200, 10);
28
29    // Create a slice of the algorithms we want to measure
30    let algorithms: &[(fn(&mut input::InputVec), &str); 2] = &[
31        (merge_sort_input, "Merge sort"),
32        (quick_sort_input, "Quick sort"),
33    ];
34
35    // Measure the algorithms on the vectors, given a relative error of 0.001
36    let results = measure_mut(&mut vectors, algorithms, 0.001);
37
38    let result_clone = results.clone();
39    // Serialize the results to a json file
40    result_clone.serialize_json("results.json");
41
42    let file_name = "results/sorting.svg";
43
44    // Plot the results
45    let config = PlotConfig::default()
46        .with_title("Sorting algorithms")
47        .with_caption("The time plot of sorting algorithms");
48
49    time_plot(file_name, results, &config);
50}
More examples
Hide additional examples
examples/search/main.rs (line 56)
19fn main() {
20    // Create a distribution for the length of the vectors
21    // Here we use an uniform distribution with a minimum of 10 and a maximum of 100_000
22    let length_distribution = Uniform::new(10..=100_000);
23
24    // Create the builder for the vectors
25    // Here we choose to use the fast generator method in order to generate ordered vectors
26    let vector_builder = InputBuilder::new(length_distribution, Generator::Fast);
27
28    // Build 200 vectors
29    let vectors = vector_builder.build(200);
30
31    // Create a slice of the algorithms we want to measure
32    let algorithms: &[(fn(&input::SearchInput) -> Option<usize>, &str); 2] = &[
33        (linear_search_input, "Linear search"),
34        (binary_search_input, "Binary search"),
35    ];
36
37    // Measure the algorithms on the vectors, given a relative error of 0.001
38    let results = measure(&vectors, algorithms, 0.001);
39
40    let file_name = "results/search.svg";
41
42    // Here we print the linear regression of the log-log scale of the results
43    for result in results.clone().measurements {
44        let log_linear_regression = result.log_log_scale().linear_regression();
45        println!(
46            "{}: {} * x + {}",
47            result.algorithm_name, log_linear_regression.0, log_linear_regression.1
48        )
49    }
50
51    let config = PlotConfig::default()
52        .with_title("Search in an ordered vector")
53        .with_caption("The time plot of searching algorithms in an ordered vector");
54
55    // Plot the results
56    time_plot(file_name, results, &config);
57}