1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! # checked-rs
//!
//! > A library for encoding validation semantics into the type system.
//!
//! ## Overview
//!
//! The main components of this library is the the attribute macro `clamped` and the `View` struct _(plus the `Validator` trait)_.
//! Additionally, there are some traits and types such as `Behavior` and `ClampGuard` that either configure how overflow is handled or provide an alternative way to interact with the clamped types.
//!
//! ### `clamped` attribute macro
//!
//! The `clamped` attribute macro is used to create a specialized clamped type. The macro can be used on either field-less structs or enums with field-less variants.
//! Whe used on a struct, the struct will be transformed to have a single field that is the clamped value. When used on an enum, the enum will be transformed to have a variant for each state within the clamped range.
//!
//! > For the remainder of these docs, `int` will be used to refer to the integer type used for the clamped value.
//!
//! The macro requires the following positional arguments:
//! - `integer`: The integer type to use for the clamped value.
//!
//! The macro accepts the following arguments _(in any order)_:
//! - `behavior`: The behavior to use when the value overflows the limits. The default behavior is `Panicking`.
//! - `default`: The default value to use when the value is not provided. The default default value is the minimum value.
//! - `lower`: The lower limit of the clamped value. The default lower limit is the minimum value of the integer type.
//! - `upper`: The upper limit of the clamped value. The default upper limit is the maximum value of the integer type.
//!
//! The transformed type will have the following inherent implementations:
//! - `new(value: int) -> Self`: A constructor that creates a new clamped value from the provided value.
//! - `rand() -> Self`: A method that generates a random value within the clamped range.
//! - `validate(value: int) -> Result<int, Error>`: A method that validates the provided value and returns the value if it is within the clamped range.
//! - `modify<'a>(&'a mut self) -> Guard<'a>`: A method that returns a guard that can be used to stage _(potentially out-of-bounds)_ changes to the clamped value and either commit or discard the changes.
//!
//! The transformed type will have the following custom traits implemented:
//! - `InherentLimits<int>`: A trait that defines the minimum and maximum values of the clamped range.
//! - `InherentBehavior`: A trait that defines the behavior to use when the value overflows the limits.
//! - `ClampedInteger<int>`: A trait that defines the methods for converting to and from the underlying integer type.
//!
//! The transformed type will have the following standard traits implemented:
//! - `Default`, `Deref`, `AsRef`, `FromStr`, `PartialEq`, `PartialOrd`, `Eq`, `Ord`, `Add`, `AddAssign`, `Sub`, `SubAssign`, `Mul`, `MulAssign`, `Div`, `DivAssign`, `Rem`, `RemAssign`, `Neg`, `Not`, `BitAnd`, `BitAndAssign`, `BitOr`, `BitOrAssign`, `BitXor`, `BitXorAssign`.
//! - `From` implementations are provided to support conversions for the same machine integer types as the underlying integer type.
//!
//! > **NOTE**: The `std::cmp` and `std::ops` traits support `rhs` values of the clamped type or the underlying integer type.
//!
//! The transformed type will have the following external traits implemented:
//! - `serde::Serialize`, `serde::Deserialize`
//!
//! ### Struct Usage
//!
//! When used on a struct, you can optionally specify if it should be a `Soft` or `Hard` clamped type.
//!
//! #### Soft Clamps
//!
//! Soft clamps are clamped types that **_DO NOT_** enforce the limits on the value. Instead, the value is clamped when it is assigned via the `set` method. The method `set_unchecked` can be used to set the value without clamping. Alternatively, the method `get_mut` can be used to get a mutable reference to the inner value or the arithmetic traits can be used to perform operations on the value without clamping.
//!
//! Additionally, they will have the following extra standard traits implemented:
//! - `DerefMut`, `AsMut`
//!
//! #### Hard Clamps
//!
//! Hard clamps are clamped types that **_DO_** enforce the limits on the value. The value is clamped when it is created and any operations that would cause the value to overflow the limits will be handled according to the specified behavior.
//!
//! > **UNSAFE NOTE**: The `set_unchecked` and `as_mut` methods are available but marked unsafe because they can be used to assign an out-of-bounds value.
//!
//! ### Enum Usage
//!
//! Each variant of the enum will either represent a specific value within the overall clamped range, a hard clamped sub-range or a special variant that represents any value that is not explicitly handled. The variants will have corresponding methods that can be used to create a new instances of that variant or check if the contained value is that variant.
//!
//! > **NOTE**: The enum must account for all possible values within the clamped range. This can be done by using the `#[eq]` and `#[range]` attributes on the variants.
//! > The `#[other]` attribute can be used to account for any values that are not explicitly handled.
//!
//! #### Example
//!
//! ```ignore
//! use checked_rs::prelude::*;
//!
//! #[clamped(u16, default = 600, behavior = Saturating, lower = 100, upper = 600)]
//! #[derive(Debug, Clone, Copy)]
//! enum ResponseCode {
//!     #[eq(100)]
//!     Continue,
//!     #[eq(200)]
//!     Success,
//!     #[eq(300)]
//!     Redirection,
//!     #[eq(400)]
//!     BadRequest,
//!     #[eq(404)]
//!     NotFound,
//!     #[range(500..=599)]
//!     ServerError,
//!     #[other]
//!     Unknown,
//!     #[eq(600)]
//!     Invalid,
//! }
//!
//! ```
//!
//! ### `View`
//!
//! The `View` struct is a wrapper around a value that encodes it's validation logic into the wrapper. The `Validator` trait is used to define the validation logic for a `View`.
//! This wrapper is lightweight and can be used in place of the raw value via the `Deref` and/or  `AsRef` traits.
//!
//! ```no_run
//! use checked_rs::prelude::*;
//!
//! #[derive(Clone, Copy)]
//! struct NotSeven;
//!
//! impl Validator for NotSeven {
//!     type Item = i32;
//!     type Error = anyhow::Error;
//!
//!     fn validate(item: &Self::Item) -> Result<()> {
//!         if *item == 7 {
//!             Err(anyhow::anyhow!("Value must not be 7"))
//!         } else {
//!             Ok(())
//!         }
//!     }
//! }
//!
//! let mut item = View::with_validator(0, NotSeven);
//! let mut g = item.modify();
//!
//! *g = 7;
//! assert_eq!(*g, 7);
//! assert!(g.check().is_err());
//!
//! *g = 10;
//! assert!(g.commit().is_ok());
//!
//! // the guard is consumed by commit, so we can't check it again
//! // the `View`'s value should be updated
//! assert_eq!(&*item, &10);
//!
//! ```

use std::{
    num,
    ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Rem, Sub},
};
pub mod clamp;
pub mod guard;
pub mod view;

mod reexports {
    #[doc(hidden)]
    pub use anyhow::{anyhow, bail, ensure, format_err, Chain, Context, Error, Result};
    #[doc(hidden)]
    pub use serde;
}

pub mod prelude {
    pub use crate::reexports::*;

    pub use crate::clamp::*;
    pub use crate::commit_or_bail;
    pub use crate::view::*;
    pub use crate::{Behavior, InherentBehavior, InherentLimits};
    pub use checked_rs_macros::clamped;
}

pub trait Behavior: Copy + 'static {
    // Binary Ops
    fn add<T: Add<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: Add<Output = num::Saturating<T>>;
    fn sub<T: Sub<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: Sub<Output = num::Saturating<T>>;
    fn mul<T: Mul<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: Mul<Output = num::Saturating<T>>;
    fn div<T: Div<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: Div<Output = num::Saturating<T>>;
    fn rem<T: Rem<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: Rem<Output = num::Saturating<T>>;
    fn bitand<T: BitAnd<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: BitAnd<Output = num::Saturating<T>>;
    fn bitor<T: BitOr<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: BitOr<Output = num::Saturating<T>>;
    fn bitxor<T: BitXor<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: BitXor<Output = num::Saturating<T>>;
    // fn shl<T: Shl<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    // where
    //     T::Output: Eq + Ord,
    //     num::Saturating<T>: Shl<Output = num::Saturating<T>>;
    // fn shr<T: Shr<Output = T>>(lhs: T, rhs: T, min: T::Output, max: T::Output) -> T::Output
    // where
    //     T::Output: Eq + Ord,
    //     num::Saturating<T>: Shr<Output = num::Saturating<T>>;
    // Unary Ops
    fn neg<T: std::ops::Neg<Output = T>>(value: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: std::ops::Neg<Output = num::Saturating<T>>;
    fn not<T: std::ops::Not<Output = T>>(value: T, min: T::Output, max: T::Output) -> T::Output
    where
        T::Output: Eq + Ord,
        num::Saturating<T>: std::ops::Not<Output = num::Saturating<T>>;
}

pub trait InherentLimits<T>: 'static {
    const MIN: T;
    const MAX: T;
}

pub trait InherentBehavior: 'static {
    type Behavior: Behavior;
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;

    #[clamped(u16, default = 600, behavior = Saturating, lower = 100, upper = 600)]
    #[derive(Debug, Clone, Copy)]
    enum ResponseCode {
        #[eq(100)]
        Continue,
        #[eq(200)]
        Success,
        #[eq(300)]
        Redirection,
        #[eq(400)]
        BadRequest,
        #[eq(404)]
        NotFound,
        #[range(500..=599)]
        ServerError,
        #[other]
        Unknown,
        #[eq(600)]
        Invalid,
    }

    #[test]
    fn test_response_code() {
        let mut code = ResponseCode::new_success();
        assert!(code.is_success());

        code += 100;
        assert!(code.is_redirection());

        code += u16::MAX;
        assert!(code.is_invalid());

        code -= 10;
        assert!(code.is_server_error());

        let mut g = code.modify();

        *g = 111;

        assert!(g.commit().is_ok());
        assert!(code.is_unknown());
    }

    #[test]
    fn test_from_str() -> Result<()> {
        let code: ResponseCode = "200".parse()?;
        assert!(code.is_success());
        Ok(())
    }
}