1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
use log::{debug, error, info};
use nagios_range::NagiosRange;
use rand::Rng;
use std::fmt;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, ToSocketAddrs};
use std::thread;
use std::time::{Duration, SystemTime};
use thiserror::Error;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum AggregationMethod {
    Average,
    Median,
    Max,
    Min,
}

impl std::str::FromStr for AggregationMethod {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s.to_lowercase().as_str() {
            "average" => Ok(AggregationMethod::Average),
            "avg" => Ok(AggregationMethod::Average),
            "mean" => Ok(AggregationMethod::Average),
            "median" => Ok(AggregationMethod::Median),
            "med" => Ok(AggregationMethod::Median),
            "minimum" => Ok(AggregationMethod::Min),
            "min" => Ok(AggregationMethod::Min),
            "maximum" => Ok(AggregationMethod::Max),
            "max" => Ok(AggregationMethod::Max),
            _ => Err(format!("'{}' is not a valid aggregation method", s)),
        }
    }
}

impl fmt::Display for AggregationMethod {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            AggregationMethod::Average => write!(f, "Average"),
            AggregationMethod::Median => write!(f, "Median"),
            AggregationMethod::Max => write!(f, "Max"),
            AggregationMethod::Min => write!(f, "Min"),
        }
    }
}

#[derive(Debug)]
pub struct PingErrorWrapper(ping::Error);

impl PartialEq for PingErrorWrapper {
    fn eq(&self, other: &Self) -> bool {
        format!("{:?}", self.0) == format!("{:?}", other.0)
    }
}

impl Eq for PingErrorWrapper {}

impl fmt::Display for PingErrorWrapper {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{:?}", self.0)
    }
}

impl std::error::Error for PingErrorWrapper {}

#[non_exhaustive]
#[derive(Error, Debug, Eq, PartialEq)]
pub enum CheckJitterError {
    #[error("DNS Lookup failed for: {0}")]
    DnsLookupFailed(String),

    #[error("The delta count is 0. Cannot calculate jitter.")]
    EmptyDeltas,

    #[error("Invalid IP: {0}")]
    InvalidIP(String),

    #[error("Ping failed because of insufficient permissions")]
    PermissionDenied,

    #[error("Ping failed with error: {0}")]
    PingError(PingErrorWrapper),

    #[error("Ping failed with IO error: {0}")]
    PingIoError(String),

    #[error("Ping timed out after: {0}ms")]
    Timeout(String),

    #[error("Unable to parse hostname: {0}")]
    UrlParseError(url::ParseError),
}

impl From<std::io::Error> for CheckJitterError {
    fn from(err: std::io::Error) -> Self {
        match err.kind() {
            std::io::ErrorKind::PermissionDenied => CheckJitterError::PermissionDenied,
            _ => CheckJitterError::PingIoError(err.to_string()),
        }
    }
}

#[derive(Clone, Debug, PartialEq)]
pub struct Thresholds {
    pub warning: Option<NagiosRange>,
    pub critical: Option<NagiosRange>,
}

#[non_exhaustive]
#[derive(Debug, PartialEq)]
pub enum UnkownVariant {
    Error(CheckJitterError),
    FailedToInitLogger(String),
    InvalidAddr(String),
    InvalidMinMaxInterval(u64, u64),
    NoThresholds,
    RangeParseError(String, nagios_range::Error),
    Timeout(Duration),
}

#[derive(Debug, PartialEq)]
pub enum Status<'a> {
    Ok(AggregationMethod, f64, &'a Thresholds),
    Warning(AggregationMethod, f64, &'a Thresholds),
    Critical(AggregationMethod, f64, &'a Thresholds),
    Unknown(UnkownVariant),
}

fn display_string(label: &str, status: &str, uom: &str, f: f64, t: &Thresholds) -> String {
    let min: f64 = 0.0;
    match (t.warning, t.critical) {
        (Some(w), Some(c)) => {
            format!("{status} - {label}: {f}{uom}|'{label}'={f}{uom};{w};{c};{min}")
        }
        (Some(w), None) => format!("{status} - {label}: {f}{uom}|'{label}'={f}{uom};{w};;{min}"),
        (None, Some(c)) => format!("{status} - {label}: {f}{uom}|'{label}'={f}{uom};;{c};{min}"),
        (None, None) => format!("{status} - {label}: {f}{uom}|'{label}'={f}{uom};;;{min}"),
    }
}

#[cfg(test)]
mod display_string_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_both_thresholds() {
        let thresholds = Thresholds {
            warning: Some(NagiosRange::from("0:0.5").unwrap()),
            critical: Some(NagiosRange::from("0:1").unwrap()),
        };

        let expected = "OK - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;0:0.5;0:1;0";
        let actual = display_string("Average Jitter", "OK", "ms", 0.1, &thresholds);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_only_warning() {
        let thresholds = Thresholds {
            warning: Some(NagiosRange::from("0:0.5").unwrap()),
            critical: None,
        };

        let expected = "OK - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;0:0.5;;0";
        let actual = display_string("Average Jitter", "OK", "ms", 0.1, &thresholds);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_only_critical() {
        let thresholds = Thresholds {
            warning: None,
            critical: Some(NagiosRange::from("0:0.5").unwrap()),
        };

        let expected = "OK - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;;0:0.5;0";
        let actual = display_string("Average Jitter", "OK", "ms", 0.1, &thresholds);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_no_thresholds() {
        let thresholds = Thresholds {
            warning: None,
            critical: None,
        };

        let expected = "OK - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;;;0";
        let actual = display_string("Average Jitter", "OK", "ms", 0.1, &thresholds);

        assert_eq!(actual, expected);
    }
}

impl fmt::Display for Status<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let uom = "ms";
        let label = match self {
            Status::Ok(AggregationMethod::Average, _, _) => "Average Jitter",
            Status::Ok(AggregationMethod::Median, _, _) => "Median Jitter",
            Status::Ok(AggregationMethod::Max, _, _) => "Max Jitter",
            Status::Ok(AggregationMethod::Min, _, _) => "Min Jitter",
            Status::Warning(AggregationMethod::Average, _, _) => "Average Jitter",
            Status::Warning(AggregationMethod::Median, _, _) => "Median Jitter",
            Status::Warning(AggregationMethod::Max, _, _) => "Max Jitter",
            Status::Warning(AggregationMethod::Min, _, _) => "Min Jitter",
            Status::Critical(AggregationMethod::Average, _, _) => "Average Jitter",
            Status::Critical(AggregationMethod::Median, _, _) => "Median Jitter",
            Status::Critical(AggregationMethod::Max, _, _) => "Max Jitter",
            Status::Critical(AggregationMethod::Min, _, _) => "Min Jitter",
            Status::Unknown(_) => "Unknown",
        };

        match self {
            Status::Ok(_, n, t) => {
                write!(f, "{}", display_string(label, "OK", uom, *n, t))
            }
            Status::Warning(_, n, t) => {
                write!(f, "{}", display_string(label, "WARNING", uom, *n, t))
            }
            Status::Critical(_, n, t) => {
                write!(f, "{}", display_string(label, "CRITICAL", uom, *n, t))
            }
            Status::Unknown(UnkownVariant::Error(e)) => {
                write!(f, "UNKNOWN - An error occurred: '{}'", e)
            }
            Status::Unknown(UnkownVariant::FailedToInitLogger(s)) => {
                write!(
                    f,
                    "UNKNOWN - Failed to initialize logger with error: '{}'",
                    s
                )
            }
            Status::Unknown(UnkownVariant::InvalidAddr(s)) => {
                write!(f, "UNKNOWN - Invalid address or hostname: {}", s)
            }
            Status::Unknown(UnkownVariant::InvalidMinMaxInterval(min, max)) => {
                write!(
                    f,
                    "UNKNOWN - Invalid min/max interval: min: {}, max: {}",
                    min, max
                )
            }
            Status::Unknown(UnkownVariant::NoThresholds) => {
                write!(
                    f,
                    "UNKNOWN - No thresholds provided. Provide at least one threshold."
                )
            }
            Status::Unknown(UnkownVariant::RangeParseError(s, e)) => {
                write!(
                    f,
                    "UNKNOWN - Unable to parse range '{}' with error: {}",
                    s, e
                )
            }
            Status::Unknown(UnkownVariant::Timeout(d)) => {
                write!(f, "UNKNOWN - Ping timeout occurred after {:?}", d)
            }
        }
    }
}

#[cfg(test)]
mod status_display_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_ok() {
        let t = Thresholds {
            warning: Some(NagiosRange::from("0:0.5").unwrap()),
            critical: Some(NagiosRange::from("0:1").unwrap()),
        };
        let status = Status::Ok(AggregationMethod::Average, 0.1, &t);
        let expected = "OK - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;0:0.5;0:1;0";
        let actual = format!("{}", status);

        assert_eq!(actual, expected);
    }

    #[test]
    // The expected value is the same as the previous test, even if the str given to initiate
    // the NagiosRange is different.
    fn test_with_ok_simple_thresholds() {
        let t = Thresholds {
            warning: Some(NagiosRange::from("0.5").unwrap()),
            critical: Some(NagiosRange::from("1").unwrap()),
        };
        let status = Status::Ok(AggregationMethod::Median, 0.1, &t);
        let expected = "OK - Median Jitter: 0.1ms|'Median Jitter'=0.1ms;0:0.5;0:1;0";
        let actual = format!("{}", status);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_warning() {
        let t = Thresholds {
            warning: Some(NagiosRange::from("0:0.5").unwrap()),
            critical: Some(NagiosRange::from("0:1").unwrap()),
        };
        let status = Status::Warning(AggregationMethod::Average, 0.1, &t);
        let expected = "WARNING - Average Jitter: 0.1ms|'Average Jitter'=0.1ms;0:0.5;0:1;0";
        let actual = format!("{}", status);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_critical() {
        let t = Thresholds {
            warning: Some(NagiosRange::from("0:0.5").unwrap()),
            critical: Some(NagiosRange::from("0:1").unwrap()),
        };
        let status = Status::Critical(AggregationMethod::Max, 0.1, &t);
        let expected = "CRITICAL - Max Jitter: 0.1ms|'Max Jitter'=0.1ms;0:0.5;0:1;0";
        let actual = format!("{}", status);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_error() {
        let status = Status::Unknown(UnkownVariant::Error(CheckJitterError::DnsLookupFailed(
            "example.com".to_string(),
        )));

        let expected = "UNKNOWN - An error occurred: 'DNS Lookup failed for: example.com'";
        let actual = format!("{}", status);

        assert_eq!(actual, expected);
    }
}

impl Status<'_> {
    pub fn to_int(&self) -> i32 {
        match self {
            Status::Ok(_, _, _) => 0,
            Status::Warning(_, _, _) => 1,
            Status::Critical(_, _, _) => 2,
            Status::Unknown(_) => 3,
        }
    }
}

fn abs_diff_duration(a: Duration, b: Duration) -> Duration {
    if a > b {
        a - b
    } else {
        b - a
    }
}

#[cfg(test)]
mod abs_diff_duration_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_small_a() {
        let a = Duration::from_nanos(100_000_000);
        let b = Duration::from_nanos(100_100_000);
        let expected = Duration::from_nanos(100_000);
        let actual = abs_diff_duration(a, b);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_small_b() {
        let a = Duration::from_nanos(100_100_000);
        let b = Duration::from_nanos(100_000_000);
        let expected = Duration::from_nanos(100_000);
        let actual = abs_diff_duration(a, b);

        assert_eq!(actual, expected);
    }

    #[test]
    fn test_with_equal_values() {
        let a = Duration::from_nanos(100_000_000);
        let b = Duration::from_nanos(100_000_000);
        let expected = Duration::from_nanos(0);
        let actual = abs_diff_duration(a, b);

        assert_eq!(actual, expected);
    }
}

fn generate_intervals(count: u8, min_interval: u64, max_interval: u64) -> Vec<Duration> {
    if min_interval > max_interval {
        debug!(
            "Invalid min and max interval: min: {}, max: {}. No random intervals will be generated.",
            min_interval, max_interval
        );
        return Vec::new();
    }

    if max_interval == 0 && min_interval == 0 {
        debug!("Min and max interval are both 0. No random intervals will be generated.");
        return Vec::new();
    }

    let mut intervals = Vec::with_capacity(count as usize);

    if max_interval == min_interval {
        debug!(
            "Min and max interval are equal: {}ms. Intervals will not be randomized.",
            min_interval
        );
        for _ in 0..count {
            intervals.push(Duration::from_millis(min_interval));
        }

        debug!("Random intervals: {:?}", intervals);

        return intervals;
    }

    debug!(
        "Generating {} random intervals between {}ms and {}ms...",
        count, min_interval, max_interval
    );

    for _ in 0..count {
        let interval = rand::thread_rng().gen_range(min_interval..=max_interval);
        intervals.push(Duration::from_millis(interval));
    }

    debug!("Random intervals: {:?}", intervals);

    intervals
}

#[cfg(test)]
mod generate_intervals_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_min_max() {
        let count = 10;
        let min_interval = 10;
        let max_interval = 100;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals.len(), count as usize);
        for i in intervals {
            assert!(i >= Duration::from_millis(min_interval));
            assert!(i <= Duration::from_millis(max_interval));
        }
    }

    #[test]
    fn test_with_min_max_equal() {
        let count = 10;
        let min_interval = 10;
        let max_interval = 10;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals.len(), count as usize);
        for i in intervals {
            assert_eq!(i, Duration::from_millis(min_interval));
        }
    }

    #[test]
    fn test_with_min_max_zero() {
        let count = 10;
        let min_interval = 0;
        let max_interval = 0;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals, Vec::<Duration>::new());
        assert!(intervals.is_empty());
    }

    #[test]
    fn test_with_min_max_swapped() {
        let count = 10;
        let min_interval = 100;
        let max_interval = 10;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals, Vec::<Duration>::new());
        assert!(intervals.is_empty());
    }
    #[test]
    fn test_with_zero_count() {
        let count = 0;
        let min_interval = 10;
        let max_interval = 100;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals, Vec::<Duration>::new());
        assert!(intervals.is_empty());
    }

    #[test]
    fn test_with_large_range() {
        let count = 10;
        let min_interval = 1;
        let max_interval = 1_000_000;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals.len(), count as usize);
        for i in intervals {
            assert!(i >= Duration::from_millis(min_interval));
            assert!(i <= Duration::from_millis(max_interval));
        }
    }

    #[test]
    fn test_with_single_interval() {
        let count = 1;
        let min_interval = 10;
        let max_interval = 100;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals.len(), 1);
        assert!(intervals[0] >= Duration::from_millis(min_interval));
        assert!(intervals[0] <= Duration::from_millis(max_interval));
    }

    #[test]
    fn test_with_very_large_intervals() {
        let count = 10;
        let min_interval = u64::MAX - 1_000;
        let max_interval = u64::MAX;
        let intervals = generate_intervals(count, min_interval, max_interval);

        assert_eq!(intervals.len(), count as usize);
        for i in intervals {
            assert!(i >= Duration::from_millis(min_interval));
            assert!(i <= Duration::from_millis(max_interval));
        }
    }
}

fn parse_addr(addr: &str) -> Result<IpAddr, CheckJitterError> {
    let ip = if let Ok(ipv4) = addr.parse::<Ipv4Addr>() {
        IpAddr::V4(ipv4)
    } else if let Ok(ipv6) = addr.parse::<Ipv6Addr>() {
        IpAddr::V6(ipv6)
    } else {
        // Perform DNS lookup
        match (addr, 0).to_socket_addrs()?.next() {
            Some(socket_addr) => socket_addr.ip(),
            None => return Err(CheckJitterError::DnsLookupFailed(addr.to_string())),
        }
    };

    Ok(ip)
}

fn run_samples(
    ip: IpAddr,
    samples: u8,
    timeout: Duration,
    mut intervals: Vec<Duration>,
) -> Result<Vec<Duration>, CheckJitterError> {
    let mut durations = Vec::<Duration>::with_capacity(samples as usize);
    for i in 0..samples {
        let start = SystemTime::now();
        debug!("Ping round {}, start time: {:?}", i + 1, start);
        match ping::ping(ip, Some(timeout), None, None, None, None) {
            Ok(_) => {
                let end = SystemTime::now();
                debug!("Ping round {}, end time: {:?}", i + 1, end);

                let duration = end.duration_since(start).unwrap();
                debug!("Ping round {}, duration: {:?}", i + 1, duration);

                durations.push(end.duration_since(start).unwrap());

                if let Some(interval) = intervals.pop() {
                    debug!("Sleeping for {:?}...", interval);
                    thread::sleep(interval);
                };
            }
            Err(e) => {
                if let ping::Error::IoError { error } = &e {
                    match error.kind() {
                        std::io::ErrorKind::PermissionDenied => {
                            return Err(CheckJitterError::PermissionDenied);
                        }
                        std::io::ErrorKind::WouldBlock => {
                            return Err(CheckJitterError::Timeout(timeout.as_millis().to_string()));
                        }
                        _ => {
                            return Err(CheckJitterError::PingIoError(error.to_string()));
                        }
                    }
                }
                return Err(CheckJitterError::PingError(PingErrorWrapper(e)));
            }
        };
    }
    debug!("Ping durations: {:?}", durations);
    Ok(durations)
}

fn get_durations(
    addr: &str,
    samples: u8,
    timeout: Duration,
    min_interval: u64,
    max_interval: u64,
) -> Result<Vec<Duration>, CheckJitterError> {
    let ip = parse_addr(addr)?;
    let intervals = generate_intervals(samples - 1, min_interval, max_interval);
    run_samples(ip, samples, timeout, intervals)
}

fn calculate_deltas(durations: Vec<Duration>) -> Result<Vec<Duration>, CheckJitterError> {
    let delta_count: usize = durations.len() - 1;
    let mut deltas = Vec::<Duration>::with_capacity(delta_count);

    for i in 1..durations.len() {
        let d = abs_diff_duration(durations[i], durations[i - 1]);
        deltas.push(d);
    }

    debug!("Deltas: {:?}", deltas);

    Ok(deltas)
}

#[cfg(test)]
mod calculate_deltas_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_simple_durations() {
        let durations = vec![
            Duration::from_nanos(100_000_000),
            Duration::from_nanos(100_100_000),
            Duration::from_nanos(100_200_000),
            Duration::from_nanos(100_300_000),
        ];

        let expected_deltas = vec![
            Duration::from_nanos(100_000),
            Duration::from_nanos(100_000),
            Duration::from_nanos(100_000),
        ];

        let deltas = calculate_deltas(durations).unwrap();

        assert_eq!(deltas, expected_deltas);
    }

    #[test]
    fn test_with_irregular_durations() {
        let durations = vec![
            Duration::from_nanos(100_000_000),
            Duration::from_nanos(100_101_200),
            Duration::from_nanos(101_200_030),
            Duration::from_nanos(100_310_900),
        ];

        let expected_deltas = vec![
            Duration::from_nanos(101_200),
            Duration::from_nanos(1_098_830),
            Duration::from_nanos(889_130),
        ];

        let deltas = calculate_deltas(durations).unwrap();
        assert_eq!(deltas, expected_deltas);
    }
}

fn round_jitter(j: f64, precision: u8) -> Result<f64, CheckJitterError> {
    let factor = 10f64.powi(precision as i32);
    let rounded_avg_jitter = (j * factor).round() / factor;
    debug!("jitter as rounded f64: {:?}", rounded_avg_jitter);

    Ok(rounded_avg_jitter)
}

fn calculate_avg_jitter(deltas: Vec<Duration>) -> Result<f64, CheckJitterError> {
    let total_jitter = deltas.iter().sum::<Duration>();
    debug!("Sum of deltas: {:?}", total_jitter);

    let avg_jitter = total_jitter / deltas.len() as u32;
    debug!("Average jitter duration: {:?}", avg_jitter);

    let average_float = avg_jitter.as_secs_f64() * 1_000.0;
    debug!("Average jitter as f64: {:?}", average_float);

    Ok(average_float)
}

fn calculate_median_jitter(deltas: Vec<Duration>) -> Result<f64, CheckJitterError> {
    let mut sorted_deltas = deltas.clone();
    sorted_deltas.sort();
    debug!("Sorted deltas: {:?}", sorted_deltas);

    let len = sorted_deltas.len();
    debug!("Number of deltas: {}", len);

    let median_float: f64 = if len % 2 == 0 {
        let mid = len / 2;
        let mid_1 = mid - 1;
        let mid_2 = mid;
        let dur_1 = sorted_deltas[mid_1].as_secs_f64() * 1_000.0;
        let dur_2 = sorted_deltas[mid_2].as_secs_f64() * 1_000.0;
        (dur_1 + dur_2) / 2.0
    } else {
        let mid = len / 2;
        sorted_deltas[mid].as_secs_f64() * 1_000.0
    };
    debug!("Median jitter as f64: {:?}", median_float);

    Ok(median_float)
}

fn calculate_max_jitter(deltas: Vec<Duration>) -> Result<f64, CheckJitterError> {
    let max = deltas.iter().max().ok_or(CheckJitterError::EmptyDeltas)?;
    debug!("Max jitter: {:?}", max);
    let max_float = max.as_secs_f64() * 1_000.0;
    debug!("Max jitter as f64: {:?}", max_float);

    Ok(max_float)
}

fn calculate_min_jitter(deltas: Vec<Duration>) -> Result<f64, CheckJitterError> {
    let min = deltas.iter().min().ok_or(CheckJitterError::EmptyDeltas)?;
    debug!("Min jitter: {:?}", min);
    let min_float = min.as_secs_f64() * 1_000.0;
    debug!("Min jitter as f64: {:?}", min_float);

    Ok(min_float)
}

#[cfg(test)]
mod calculate_rounded_jitter_tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn test_with_simple_durations() {
        let simple_durations = vec![
            Duration::from_nanos(100_000_000),
            Duration::from_nanos(100_100_000),
            Duration::from_nanos(100_200_000),
            Duration::from_nanos(100_300_000),
            Duration::from_nanos(100_400_000),
            Duration::from_nanos(100_500_000),
            Duration::from_nanos(100_600_000),
            Duration::from_nanos(100_700_000),
            Duration::from_nanos(100_800_000),
            Duration::from_nanos(100_900_000),
        ];

        let expected_average_jitter = 0.1;
        let expected_median_jitter = 0.1;
        let expected_max_jitter = 0.1;
        let expected_min_jitter = 0.1;
        let deltas = calculate_deltas(simple_durations).unwrap();
        println!("{:#?}", deltas.clone());
        let average_jitter = calculate_avg_jitter(deltas.clone()).unwrap();
        let median_jitter = calculate_median_jitter(deltas.clone()).unwrap();
        let max_jitter = calculate_max_jitter(deltas.clone()).unwrap();
        let min_jitter = calculate_min_jitter(deltas).unwrap();
        let rounded_average_jitter = round_jitter(average_jitter, 3).unwrap();
        let rounded_median_jitter = round_jitter(median_jitter, 3).unwrap();
        let rounded_max_jitter = round_jitter(max_jitter, 3).unwrap();
        let rounded_min_jitter = round_jitter(min_jitter, 3).unwrap();

        assert_eq!(rounded_average_jitter, expected_average_jitter);
        assert_eq!(rounded_median_jitter, expected_median_jitter);
        assert_eq!(rounded_max_jitter, expected_max_jitter);
        assert_eq!(rounded_min_jitter, expected_min_jitter);
    }

    #[test]
    fn test_with_even_number_of_irregular_durations() {
        let irregular_durations = vec![
            Duration::from_nanos(270_279_792),
            Duration::from_nanos(270_400_049),
            Duration::from_nanos(270_242_514),
            Duration::from_nanos(269_988_869),
            Duration::from_nanos(270_157_314),
            Duration::from_nanos(270_096_136),
            Duration::from_nanos(270_105_637),
            Duration::from_nanos(270_003_857),
            Duration::from_nanos(270_192_099),
            Duration::from_nanos(270_035_557),
        ];

        let expected_average_jitter = 0.135_236;
        let expected_median_jitter = 0.156_542;
        let expected_max_jitter = 0.253_645;
        let expected_min_jitter = 0.009_501;
        let deltas = calculate_deltas(irregular_durations).unwrap();
        println!("{:#?}", deltas.clone());
        let average_jitter = calculate_avg_jitter(deltas.clone()).unwrap();
        let median_jitter = calculate_median_jitter(deltas.clone()).unwrap();
        let max_jitter = calculate_max_jitter(deltas.clone()).unwrap();
        let min_jitter = calculate_min_jitter(deltas).unwrap();
        let rounded_average_jitter = round_jitter(average_jitter, 6).unwrap();
        let rounded_median_jitter = round_jitter(median_jitter, 6).unwrap();
        let rounded_max_jitter = round_jitter(max_jitter, 6).unwrap();
        let rounded_min_jitter = round_jitter(min_jitter, 6).unwrap();

        assert_eq!(rounded_average_jitter, expected_average_jitter);
        assert_eq!(rounded_median_jitter, expected_median_jitter);
        assert_eq!(rounded_max_jitter, expected_max_jitter);
        assert_eq!(rounded_min_jitter, expected_min_jitter);
    }

    #[test]
    fn test_with_uneven_number_of_irregular_durations() {
        let irregular_durations = vec![
            Duration::from_nanos(270_279_792),
            Duration::from_nanos(270_400_049),
            Duration::from_nanos(270_242_514),
            Duration::from_nanos(269_988_869),
            Duration::from_nanos(270_157_314),
            Duration::from_nanos(270_096_136),
            Duration::from_nanos(270_105_637),
            Duration::from_nanos(270_003_857),
            Duration::from_nanos(270_192_099),
        ];

        let expected_average_jitter = 0.132_572;
        let expected_median_jitter = 0.138_896;
        let expected_max_jitter = 0.253_645;
        let expected_min_jitter = 0.009_501;
        let deltas = calculate_deltas(irregular_durations).unwrap();
        println!("{:#?}", deltas.clone());
        let average_jitter = calculate_avg_jitter(deltas.clone()).unwrap();
        let median_jitter = calculate_median_jitter(deltas.clone()).unwrap();
        let max_jitter = calculate_max_jitter(deltas.clone()).unwrap();
        let min_jitter = calculate_min_jitter(deltas).unwrap();
        let rounded_average_jitter = round_jitter(average_jitter, 6).unwrap();
        let rounded_median_jitter = round_jitter(median_jitter, 6).unwrap();
        let rounded_max_jitter = round_jitter(max_jitter, 6).unwrap();
        let rounded_min_jitter = round_jitter(min_jitter, 6).unwrap();

        assert_eq!(rounded_average_jitter, expected_average_jitter);
        assert_eq!(rounded_median_jitter, expected_median_jitter);
        assert_eq!(rounded_max_jitter, expected_max_jitter);
        assert_eq!(rounded_min_jitter, expected_min_jitter);
    }
}

/// Get and calculate the aggregated jitter to an IP address or hostname.
///
/// This function will perform a DNS lookup if a hostname is provided and then use that IP address
/// to ping the target. The function will then calculate the aggregated value based on the
/// aggregation method passed as an argument. This value will then be rounded to the specified
/// decimal.
///
/// Note that opening a raw socket requires root privileges on Unix-like systems.
///
/// # Arguments
/// * `aggr_method` - The aggregation method to use.
/// * `addr` - The IP address or hostname to ping.
/// * `samples` - The number of samples (pings) to take.
/// * `timeout` - The timeout for each ping.
/// * `precision` - The number of decimal places to round the jitter to.
/// * `min_interval` - The minimum interval between pings in milliseconds.
/// * `max_interval` - The maximum interval between pings in milliseconds.
///
/// # Returns
/// The aggregated jitter in milliseconds as a floating point number rounded to the
/// specified decimal.
///
/// # Example
/// ```rust,no_run // This example will not run because it requires root privileges.
/// use check_jitter::{get_jitter, CheckJitterError, AggregationMethod};
/// use std::time::Duration;
///
/// let jitter = get_jitter(AggregationMethod::Average, "192.168.1.1", 10, Duration::from_secs(1), 3, 10, 100).unwrap();
/// println!("Average jitter: {}ms", jitter);
/// ```
pub fn get_jitter(
    aggr_method: AggregationMethod,
    addr: &str,
    samples: u8,
    timeout: Duration,
    precision: u8,
    min_interval: u64,
    max_interval: u64,
) -> Result<f64, CheckJitterError> {
    let durations = get_durations(addr, samples, timeout, min_interval, max_interval)?;
    let deltas = calculate_deltas(durations)?;
    let jitter = match aggr_method {
        AggregationMethod::Average => calculate_avg_jitter(deltas)?,
        AggregationMethod::Median => calculate_median_jitter(deltas)?,
        AggregationMethod::Max => calculate_max_jitter(deltas)?,
        AggregationMethod::Min => calculate_min_jitter(deltas)?,
    };
    round_jitter(jitter, precision)
}

/// Evaluate the jitter against the thresholds and return the appropriate status.
///
/// This function will evaluate the jitter against the provided thresholds and return the
/// appropriate status. It will match against the critical threshold first and then the warning
/// threshold, returning the first match or `Status::Ok` if no thresholds are matched.
///
/// # Arguments
/// * `jitter` - The jitter to evaluate as a 64 bit floating point number.
/// * `thresholds` - A reference to the `Thresholds` to evaluate against.
///
/// # Returns
/// The `Status` of the jitter against the thresholds.
///
/// # Example
/// ```rust
/// use check_jitter::{evaluate_thresholds, AggregationMethod, Thresholds, Status};
/// use nagios_range::NagiosRange;
/// use std::time::Duration;
///
/// let jitter = 0.1;
/// let thresholds = Thresholds {
///     warning: Some(NagiosRange::from("0:0.5").unwrap()),
///     critical: Some(NagiosRange::from("0:1").unwrap()),
/// };
///
/// let status = evaluate_thresholds(AggregationMethod::Average, jitter, &thresholds);
///
/// match status {
///     Status::Ok(_, _, _) => println!("Jitter is OK"),
///     Status::Warning(_, _, _) => println!("Jitter is warning"),
///     Status::Critical(_, _, _) => println!("Jitter is critical"),
///     Status::Unknown(_) => println!("Unknown status"),
/// }
/// ```
pub fn evaluate_thresholds(
    aggr_method: AggregationMethod,
    value: f64,
    thresholds: &Thresholds,
) -> Status {
    info!("Evaluating jitter: {:?}", value);
    if let Some(c) = thresholds.critical {
        info!("Checking critical threshold: {:?}", c);
        if c.check(value) {
            info!("Jitter is critical: {:?}", value);
            return Status::Critical(aggr_method, value, thresholds);
        } else {
            info!("Jitter is not critical: {:?}", value);
        }
    } else {
        info!("No critical threshold provided");
    }

    if let Some(w) = thresholds.warning {
        info!("Checking warning threshold: {:?}", w);
        if w.check(value) {
            info!("Jitter is warning: {:?}", value);
            return Status::Warning(aggr_method, value, thresholds);
        } else {
            info!("Jitter is not warning: {:?}", value);
        }
    } else {
        info!("No warning threshold provided");
    }

    Status::Ok(aggr_method, value, thresholds)
}