1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//! # cheap-ruler
//!
//! A collection of very fast approximations to common geodesic measurements.
//! Useful for performance-sensitive code that measures things on a city scale.
//!
//! This is a port of the cheap-ruler JS library and cheap-ruler-cpp C++ library
//! into safe Rust.
//!
//! Note: WGS84 ellipsoid is used instead of the Clarke 1866 parameters used by
//! the FCC formulas. See cheap-ruler-cpp#13 for more information.

#[macro_use]
extern crate geo_types;

use geo_types::{Coordinate, LineString, Point, Polygon};
use std::f64;
use std::iter;
use std::mem;

pub use distance_unit::DistanceUnit;
pub use point_on_line::PointOnLine;
pub use rect::Rect;

const RE: f64 = 6378.137; // equatorial radius in km
const FE: f64 = 1.0 / 298.257223563; // flattening
const E2: f64 = FE * (2.0 - FE);

/// A collection of very fast approximations to common geodesic measurements.
/// Useful for performance-sensitive code that measures things on a city scale.
/// Point coordinates are in the [x = longitude, y = latitude] form.
#[derive(Debug, PartialEq, Clone)]
pub struct CheapRuler {
    kx: f64,
    ky: f64,
    dkx: f64,
    dky: f64,
    distance_unit: DistanceUnit,
}

impl CheapRuler {
    pub fn new(latitude: f64, distance_unit: DistanceUnit) -> Self {
        // Curvature formulas from https://en.wikipedia.org/wiki/Earth_radius#Meridional
        let coslat = latitude.to_radians().cos();
        let w2 = 1.0 / (1.0 - E2 * (1.0 - coslat * coslat));
        let w = w2.sqrt();

        // multipliers for converting longitude and latitude degrees into distance
        let dkx = w * coslat; // based on normal radius of curvature
        let dky = w * w2 * (1.0 - E2); // based on meridonal radius of curvature

        let (kx, ky) = calculate_multipliers(distance_unit, dkx, dky);

        Self {
            kx,
            ky,
            dkx,
            dky,
            distance_unit,
        }
    }

    /// Creates a ruler object from tile coordinates (y and z). Convenient in
    /// tile-reduce scripts
    ///
    /// # Arguments
    ///
    /// * `y` - y
    /// * `z` - z
    /// * `distance_unit` - Unit to express distances in
    ///
    /// # Examples
    ///
    /// ```
    /// use cheap_ruler::{CheapRuler, DistanceUnit};
    /// let cr = CheapRuler::from_tile(1567, 12, DistanceUnit::Meters);
    /// ```
    pub fn from_tile(y: u32, z: u32, distance_unit: DistanceUnit) -> Self {
        assert!(z < 32);

        let n = f64::consts::PI
            * (1.0 - 2.0 * (y as f64 + 0.5) / ((1u32 << z) as f64));
        let latitude = n.sinh().atan().to_degrees();

        Self::new(latitude, distance_unit)
    }

    /// Changes the ruler's unit to the given one
    ///
    /// # Arguments
    ///
    /// * `distance_unit` - New distance unit to express distances in
    pub fn change_unit(&mut self, distance_unit: DistanceUnit) {
        let (kx, ky) = calculate_multipliers(distance_unit, self.dkx, self.dky);
        self.distance_unit = distance_unit;
        self.kx = kx;
        self.ky = ky;
    }

    /// Clones the ruler to a new one with the given unit
    ///
    /// # Arguments
    ///
    /// * `distance_unit` - Distance unit to express distances in the new ruler
    pub fn clone_with_unit(&self, distance_unit: DistanceUnit) -> Self {
        let (kx, ky) = calculate_multipliers(distance_unit, self.dkx, self.dky);
        Self {
            distance_unit,
            kx,
            ky,
            dkx: self.dkx,
            dky: self.dky,
        }
    }

    /// Gets the distance unit that the ruler was instantiated with
    pub fn distance_unit(&self) -> DistanceUnit {
        self.distance_unit
    }

    /// Calculates the square of the approximate distance between two
    /// geographical points
    ///
    /// # Arguments
    ///
    /// * `a` - First point
    /// * `b` - Second point
    pub fn square_distance(&self, a: &Point<f64>, b: &Point<f64>) -> f64 {
        let dx = long_diff(a.lng(), b.lng()) * self.kx;
        let dy = (a.lat() - b.lat()) * self.ky;
        dx.powi(2) + dy.powi(2)
    }

    /// Calculates the approximate distance between two geographical points
    ///
    /// # Arguments
    ///
    /// * `a` - First point
    /// * `b` - Second point
    ///
    /// # Examples
    ///
    /// ```
    /// use cheap_ruler::{CheapRuler, DistanceUnit};
    /// let cr = CheapRuler::new(44.7192003, DistanceUnit::Meters);
    /// let dist = cr.distance(
    ///   &(14.8901816, 44.7209699).into(),
    ///   &(14.8905188, 44.7209699).into()
    /// );
    /// assert!(dist < 38.0);
    /// ```
    pub fn distance(&self, a: &Point<f64>, b: &Point<f64>) -> f64 {
        self.square_distance(a, b).sqrt()
    }

    /// Returns the bearing between two points in angles
    ///
    /// # Arguments
    ///
    /// * `a` - First point
    /// * `b` - Second point
    ///
    /// # Examples
    ///
    /// ```
    /// use cheap_ruler::{CheapRuler, DistanceUnit};
    /// let cr = CheapRuler::new(44.7192003, DistanceUnit::Meters);
    /// let bearing = cr.bearing(
    ///   &(14.8901816, 44.7209699).into(),
    ///   &(14.8905188, 44.7209699).into()
    /// );
    /// assert_eq!(bearing, 90.0);
    /// ```
    pub fn bearing(&self, a: &Point<f64>, b: &Point<f64>) -> f64 {
        let dx = long_diff(b.lng(), a.lng()) * self.kx;
        let dy = (b.lat() - a.lat()) * self.ky;

        dx.atan2(dy).to_degrees()
    }

    /// Returns a new point given distance and bearing from the starting point
    ///
    /// # Arguments
    ///
    /// * `origin` - origin point
    /// * `dist` - distance
    /// * `bearing` - bearing
    ///
    /// # Examples
    ///
    /// ```
    /// use cheap_ruler::{CheapRuler, DistanceUnit};
    /// let cr = CheapRuler::new(44.7192003, DistanceUnit::Meters);
    /// let p1 = (14.8901816, 44.7209699).into();
    /// let p2 = (14.8905188, 44.7209699).into();
    /// let dist = cr.distance(&p1, &p2);
    /// let bearing = cr.bearing(&p1, &p2);
    /// let destination = cr.destination(&p1, dist, bearing);
    ///
    /// assert_eq!(destination.lng(), p2.lng());
    /// assert_eq!(destination.lat(), p2.lat());
    /// ```
    pub fn destination(
        &self,
        origin: &Point<f64>,
        dist: f64,
        bearing: f64,
    ) -> Point<f64> {
        let a = bearing.to_radians();
        self.offset(origin, a.sin() * dist, a.cos() * dist)
    }

    /// Returns a new point given easting and northing offsets (in ruler units)
    /// from the starting point
    ///
    /// # Arguments
    ///
    /// * `origin` - point
    /// * `dx` - easting
    /// * `dy` - northing
    pub fn offset(&self, origin: &Point<f64>, dx: f64, dy: f64) -> Point<f64> {
        (origin.lng() + dx / self.kx, origin.lat() + dy / self.ky).into()
    }

    /// Given a line (an array of points), returns the total line distance.
    ///
    /// # Arguments
    ///
    /// * `points` - line of points
    ///
    /// # Example
    ///
    /// ```
    /// use cheap_ruler::{CheapRuler, DistanceUnit};
    /// use geo_types::LineString;
    /// let cr = CheapRuler::new(50.458, DistanceUnit::Meters);
    /// let line_string: LineString<f64> = vec![
    ///     (-67.031, 50.458),
    ///     (-67.031, 50.534),
    ///     (-66.929, 50.534),
    ///     (-66.929, 50.458)
    /// ].into();
    /// let length = cr.line_distance(&line_string);
    /// ```
    pub fn line_distance(&self, points: &LineString<f64>) -> f64 {
        let line_iter = points.to_owned().into_iter();

        let left = iter::once(None).chain(line_iter.clone().map(Some));
        left.zip(line_iter)
            .map(|(a, b)| match a {
                Some(a) => self.distance(&a.into(), &b.into()),
                None => 0.0,
            })
            .sum()
    }

    /// Given a polygon returns the area
    ///
    /// * `polygon` - Polygon
    pub fn area(&self, polygon: &Polygon<f64>) -> f64 {
        // FIXME: subtract interiors
        let exterior = polygon
            .exterior()
            .points_iter()
            .collect::<Vec<Point<f64>>>();
        let mut sum = sum_area(&exterior);
        for interior in polygon.interiors() {
            let interior = interior.points_iter().collect::<Vec<Point<f64>>>();
            sum -= sum_area(&interior);
        }
        (sum.abs() / 2.0) * self.kx * self.ky
    }

    /// Returns the point at a specified distance along the line
    ///
    /// # Arguments
    ///
    /// * `line` - Line
    /// * `dist` - Distance along the line
    pub fn along(
        &self,
        line: &LineString<f64>,
        dist: f64,
    ) -> Option<Point<f64>> {
        let line_len = line.0.len();
        if line_len == 0 {
            return None;
        }

        if dist <= 0.0 {
            return Some(line[0].into());
        }

        let last_index = line_len - 1;
        let mut sum = 0.0;
        for i in 0..last_index {
            let p0 = &line[i].into();
            let p1 = &line[i + 1].into();
            let d = self.distance(p0, p1);
            sum += d;
            if sum > dist {
                return Some(interpolate(p0, p1, (dist - (sum - d)) / d));
            }
        }
        Some(line[last_index].into())
    }

    /// Returns the shortest distance between a point and a line segment given
    /// with two points.
    ///
    /// # Arguments
    ///
    /// * `p` - Point to calculate the distance from
    /// * `start` - Start point of line segment
    /// * `end` - End point of line segment
    pub fn point_to_segment_distance(
        &self,
        p: &Point<f64>,
        start: &Point<f64>,
        end: &Point<f64>,
    ) -> f64 {
        let mut x = start.lng();
        let mut y = start.lat();
        let dx = long_diff(end.lng(), x) * self.kx;
        let dy = (end.lat() - y) * self.ky;

        if dx != 0.0 || dy != 0.0 {
            let t = (long_diff(p.lng(), x) * self.kx * dx
                + (p.lat() - y) * self.ky * dy)
                / (dx * dx + dy * dy);
            if t > 1.0 {
                x = end.lng();
                y = end.lat();
            } else if t > 0.0 {
                x += (dx / self.kx) * t;
                y += (dy / self.ky) * t;
            }
        }
        self.distance(&p, &point!(x: x, y: y))
    }

    /// Returns a tuple of the form (point, index, t) where point is closest
    /// point on the line from the given point, index is the start index of the
    /// segment with the closest point, and t is a parameter from 0 to 1 that
    /// indicates where the closest point is on that segment
    ///
    /// # Arguments
    ///
    /// * `line` - Line to compare with point
    /// * `point` - Point to calculate the closest point on the line
    pub fn point_on_line(
        &self,
        line: &LineString<f64>,
        point: &Point<f64>,
    ) -> Option<PointOnLine<f64>> {
        let mut min_dist = f64::INFINITY;
        let mut min_x = 0.0;
        let mut min_y = 0.0;
        let mut min_i = 0;
        let mut min_t = 0.0;

        let line_len = line.0.len();
        if line_len == 0 {
            return None;
        }

        for i in 0..line_len - 1 {
            let mut t = 0.0;
            let mut x = line[i].x;
            let mut y = line[i].y;
            let dx = long_diff(line[i + 1].x, x) * self.kx;
            let dy = (line[i + 1].y - y) * self.ky;

            if dx != 0.0 || dy != 0.0 {
                t = (long_diff(point.lng(), x) * self.kx * dx
                    + (point.lat() - y) * self.ky * dy)
                    / (dx * dx + dy * dy);

                if t > 1.0 {
                    x = line[i + 1].x;
                    y = line[i + 1].y;
                } else if t > 0.0 {
                    x += (dx / self.kx) * t;
                    y += (dy / self.ky) * t;
                }
            }

            let d2 = self.square_distance(&point, &point!(x: x, y: y));

            if d2 < min_dist {
                min_dist = d2;
                min_x = x;
                min_y = y;
                min_i = i;
                min_t = t;
            }
        }

        Some(PointOnLine::new(
            point!(x: min_x, y: min_y),
            min_i,
            0f64.max(1f64.min(min_t)),
        ))
    }

    /// Returns a part of the given line between the start and the stop points
    /// (or their closest points on the line)
    ///
    /// # Arguments
    ///
    /// * `start` - Start point
    /// * `stop` - Stop point
    /// * `line` - Line string
    pub fn line_slice(
        &self,
        start: &Point<f64>,
        stop: &Point<f64>,
        line: &LineString<f64>,
    ) -> LineString<f64> {
        let pol1 = self.point_on_line(line, start);
        let pol2 = self.point_on_line(line, stop);

        if pol1.is_none() || pol2.is_none() {
            return line_string![];
        }
        let mut pol1 = pol1.unwrap();
        let mut pol2 = pol2.unwrap();

        if pol1.index() > pol2.index()
            || pol1.index() == pol2.index() && pol1.t() > pol2.t()
        {
            mem::swap(&mut pol1, &mut pol2);
        }

        let mut slice = vec![pol1.point()];

        let l = pol1.index() + 1;
        let r = pol2.index();

        if line[l] != slice[0].into() && l <= r {
            slice.push(line[l].into());
        }

        let mut i = l + 1;
        while i <= r {
            slice.push(line[i].into());
            i += 1;
        }

        if line[r] != pol2.point().into() {
            slice.push(pol2.point());
        }

        slice.into()
    }

    /// Returns a part of the given line between the start and the stop points
    /// indicated by distance along the line
    ///
    /// * `start` - Start distance
    /// * `stop` - Stop distance
    /// * `line` - Line string
    pub fn line_slice_along(
        &self,
        start: f64,
        stop: f64,
        line: &LineString<f64>,
    ) -> LineString<f64> {
        let mut sum = 0.0;
        let mut slice = vec![];

        let line_len = line.0.len();
        if line_len == 0 {
            return slice.into();
        }

        for i in 0..line_len - 1 {
            let p0 = line[i].into();
            let p1 = line[i + 1].into();
            let d = self.distance(&p0, &p1);

            sum += d;

            if sum > start && slice.is_empty() {
                slice.push(interpolate(&p0, &p1, (start - (sum - d)) / d));
            }

            if sum >= stop {
                slice.push(interpolate(&p0, &p1, (stop - (sum - d)) / d));
                return slice.into();
            }

            if sum > start {
                slice.push(p1);
            }
        }

        slice.into()
    }

    /// Given a point, returns a bounding rectangle created from the given point
    /// buffered by a given distance
    ///
    /// # Arguments
    ///
    /// * `p` - Point
    /// * `buffer` - Buffer distance
    pub fn buffer_point(&self, p: &Point<f64>, buffer: f64) -> Rect<f64> {
        let v = buffer / self.ky;
        let h = buffer / self.kx;

        Rect::new(
            Coordinate {
                x: p.lng() - h,
                y: p.lat() - v,
            },
            Coordinate {
                x: p.lng() + h,
                y: p.lat() + v,
            },
        )
    }

    /// Given a bounding box, returns the box buffered by a given distance
    ///
    /// # Arguments
    ///
    /// * `bbox` - Bounding box
    /// * `buffer` - Buffer distance
    pub fn buffer_bbox(&self, bbox: &Rect<f64>, buffer: f64) -> Rect<f64> {
        let v = buffer / self.ky;
        let h = buffer / self.kx;

        Rect::new(
            Coordinate {
                x: bbox.min().x - h,
                y: bbox.min().y - v,
            },
            Coordinate {
                x: bbox.max().x + h,
                y: bbox.max().y + v,
            },
        )
    }

    /// Returns true if the given point is inside in the given bounding box,
    /// otherwise false.
    ///
    /// # Arguments
    ///
    /// * `p` - Point
    /// * `bbox` - Bounding box
    pub fn inside_bbox(&self, p: &Point<f64>, bbox: &Rect<f64>) -> bool {
        p.lat() >= bbox.min().y
            && p.lat() <= bbox.max().y
            && long_diff(p.lng(), bbox.min().x) >= 0.0
            && long_diff(p.lng(), bbox.max().x) <= 0.0
    }
}

pub fn interpolate(a: &Point<f64>, b: &Point<f64>, t: f64) -> Point<f64> {
    let dx = long_diff(b.lng(), a.lng());
    let dy = b.lat() - a.lat();
    Point::new(a.lng() + dx * t, a.lat() + dy * t)
}

fn calculate_multipliers(
    distance_unit: DistanceUnit,
    dkx: f64,
    dky: f64,
) -> (f64, f64) {
    let mul = distance_unit.conversion_factor_kilometers().to_radians() * RE;
    let kx = mul * dkx;
    let ky = mul * dky;
    (kx, ky)
}

fn long_diff(a: f64, b: f64) -> f64 {
    let diff = a - b;
    diff - ((diff / 360.).round() * 360.)
}

fn sum_area(line: &[Point<f64>]) -> f64 {
    let line_len = line.len();
    let mut sum = 0.0;
    let mut k = line_len - 1;
    for j in 0..line_len {
        sum +=
            (line[j].lng() - line[k].lng()) * (line[j].lat() + line[k].lat());
        k = j;
    }
    sum
}

mod distance_unit;
mod point_on_line;
mod rect;