1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
use anyhow::{Context, Result};
use uuid::Uuid;
use crate::{
chat_context::ChatContext, chat_response::ChatResponse,
function_specification::FunctionSpecification, message::Message,
};
const DEFAULT_MODEL: &str = "gpt-3.5-turbo-0613";
const URL: &str = "https://api.openai.com/v1/chat/completions";
/// The ChatGPT object
pub struct ChatGPT {
client: reqwest::Client,
openai_api_token: String,
pub session_id: String,
pub chat_context: ChatContext,
}
impl ChatGPT {
/// Create a new ChatGPT object
/// # Arguments
/// * `openai_api_token` - The API token from OpenAI
/// * `chat_context` - The context of the chatbot.
/// Optional. If not provided, it will start a new context with the default model
/// * `session_id` - The session ID of the chatbot.
/// Optional. If not provided, it will generate a new session ID. This will be useful to track the conversation history
/// # Example
/// ```
/// use chatgpt_functions::chat_gpt::ChatGPT;
/// use anyhow::Result;
///
/// #[tokio::main]
/// async fn main() -> Result<()> {
/// let key = std::env::var("OPENAI_API_KEY")?;
/// let mut gpt = ChatGPT::new(key, None, None)?;
/// Ok(())
/// }
/// ```
/// # Errors
/// It returns an error if the API token is not valid
/// # Panics
/// It panics if the API token is not provided
/// # Remarks
/// The API token can be found on the [OpenAI API keys](https://platform.openai.com/account/api-keys)
pub fn new(
openai_api_token: String,
chat_context: Option<ChatContext>,
session_id: Option<String>,
) -> Result<ChatGPT> {
let client = reqwest::Client::new();
let session_id = if let Some(session_id) = session_id {
session_id
} else {
Uuid::new_v4().to_string()
};
let chat_context = if let Some(chat_context) = chat_context {
chat_context
} else {
ChatContext::new(DEFAULT_MODEL.to_string())
};
Ok(ChatGPT {
client,
openai_api_token,
session_id,
chat_context,
})
}
/// Calls the OpenAI API to get a response using the current context
/// # Arguments
/// * `message` - The message to send to the AI
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Panics
/// It panics if the API token is not provided
/// # Remarks
/// The context is updated with the response from the AI
pub async fn completion(&mut self) -> Result<ChatResponse> {
let response = self
.client
.post(URL)
.bearer_auth(&self.openai_api_token)
.header("Content-Type", "application/json")
// Use Display trait to avoid sending None fields that the API would reject
.body(self.chat_context.to_string())
.send()
.await
.context(format!("Failed to receive the response from {}", URL))?
.text()
.await
.context("Failed to retrieve the content of the response")?;
let answer: ChatResponse = serde_json::from_str(&response)?;
Ok(answer)
}
/// Calls the OpenAI API to get a response using the current context, adding the content provided by the user
/// This is the preferred function to use for chat completions that work with context.
///
/// This is a fully managed function, it does update the context with the message provided,
/// and it does update the context with the response from the AI.
/// It calls completion_with_user_content_updating_context internally, it's for convenience.
/// # Arguments
/// * `content` - The content of the message
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Panics
/// It panics if the API token is not provided
/// # Remarks
/// This is a fully managed function, it does update the context with the message provided,
/// and it does update the context with the response from the AI.
pub async fn completion_managed(&mut self, content: String) -> Result<ChatResponse> {
self.completion_with_user_content_updating_context(content)
.await
}
/// This function is used to call the openai API, using a Message already prepared.
/// It requires a Message object as an argument, so access to some internal work of the library.
/// This gives more flexibility to the user, but it is not recommended to use it directly.
/// It returns the response from the AI
/// It does update the context with the message provided,
/// but it does not update the context with the response from the AI
/// # Arguments
/// * `message` - The message to send to the AI
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Remarks
/// The context is updated with the message provided
/// The context is not updated with the response from the AI
/// This function is used by the other functions of the library
/// It is not recommended to use it directly
pub async fn completion_with_message(&mut self, message: Message) -> Result<ChatResponse> {
self.push_message(message);
self.completion().await
}
/// This function is used to call the openai API, using a String as the content of the message.
/// It returns the response from the AI
/// It does update the context with the message provided,
/// but it does not update the context with the response from the AI
/// # Arguments
/// * `content` - The content of the message
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Remarks
/// The context is updated with the message provided
/// The context is not updated with the response from the AI
/// This function is used by the other functions of the library
/// It is not recommended to use it directly
pub async fn completion_with_user_content(&mut self, content: String) -> Result<ChatResponse> {
let message = Message::new_user_message(content);
self.completion_with_message(message).await
}
/// This function is used to call the openai API, using content as the content of the message.
/// It returns the response from the AI
/// It does update the context with the message provided and the response from the AI
/// # Arguments
/// * `content` - The content of the message
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Remarks
/// The context is updated with the message provided
/// The context is updated with the response from the AI
/// This function is used by the other functions of the library
/// It assumes that there will only be one choice in the response
/// It returns the response from the AI
pub async fn completion_with_user_content_updating_context(
&mut self,
content: String,
) -> Result<ChatResponse> {
let message = Message::new_user_message(content);
self.completion_with_message_updating_context(message).await
}
/// This function is used to update the context with the response from the AI
/// It assumes that there will only be one choice in the response
/// It returns the response from the AI
/// It does update the context with the response from the AI
/// # Arguments
/// * `message` - The message to send to the AI
/// # Errors
/// It returns an error if the API token is not valid
/// It returns an error if the response from the API is not valid or if the content of the response is not valid
/// # Remarks
/// The context is updated with the response from the AI
/// This function is used by the other functions of the library
/// It assumes that there will only be one choice in the response
/// It panics if there is more than one choice in the response
pub async fn completion_with_message_updating_context(
&mut self,
message: Message,
) -> Result<ChatResponse> {
self.push_message(message);
let response = self.completion().await?;
self.push_message(response.choices[0].message.clone());
Ok(response)
}
/// This function is used to push a message to the context
/// This is a low level function, it is not recommended to use it directly
/// # Arguments
/// * `message` - The message to push to the context
/// # Remarks
/// This function is used by the other functions of the library
pub fn push_message(&mut self, message: Message) {
self.chat_context.push_message(message);
}
/// This function is used to set all the messages in the context
/// This will override the current messages in the context
/// This is a low level function, it is not recommended to use it directly
/// # Arguments
/// * `messages` - The messages to set in the context
/// # Remarks
/// This function is used by the other functions of the library
pub fn set_messages(&mut self, messages: Vec<Message>) {
self.chat_context.set_messages(messages);
}
/// This function is used to push a function to the context
/// This is a low level function, it is not recommended to use it directly
/// # Arguments
/// * `function` - The function to push to the context
/// # Remarks
/// This function is used by the other functions of the library
pub fn push_function(&mut self, function: FunctionSpecification) {
self.chat_context.push_function(function);
}
/// This function is used to set all the functions in the context
/// This will override the current functions in the context
/// This is a low level function, it is not recommended to use it directly
/// # Arguments
/// * `functions` - The vec of functions to set in the context
/// # Remarks
/// This function is used by the other functions of the library
pub fn set_functions(&mut self, functions: Vec<FunctionSpecification>) {
self.chat_context.set_functions(functions);
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use crate::function_specification::Parameters;
use super::*;
#[test]
fn test_chat_gpt_new() {
let chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
assert_eq!(chat_gpt.session_id.len(), 36);
assert_eq!(chat_gpt.chat_context.model, DEFAULT_MODEL);
}
#[test]
fn test_chat_gpt_new_with_session_id() {
let session_id = "session_id".to_string();
let chat_gpt = ChatGPT::new("key".to_string(), None, Some(session_id.clone())).unwrap();
assert_eq!(chat_gpt.session_id, session_id);
}
#[test]
fn test_chat_gpt_new_with_chat_context() {
let chat_context = ChatContext::new("model".to_string());
let chat_gpt = ChatGPT::new("key".to_string(), Some(chat_context), None).unwrap();
assert_eq!(chat_gpt.chat_context.model, "model");
}
#[test]
fn test_chat_gpt_new_with_session_id_and_chat_context() {
let session_id = "session_id".to_string();
let chat_context = ChatContext::new("model".to_string());
let chat_gpt = ChatGPT::new(
"key".to_string(),
Some(chat_context.clone()),
Some(session_id.clone()),
)
.unwrap();
assert_eq!(chat_gpt.session_id, session_id);
assert_eq!(chat_gpt.chat_context.model, "model");
}
#[test]
fn test_chat_gpt_push_message() {
let mut chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
let message = Message::new_user_message("content".to_string());
chat_gpt.push_message(message);
assert_eq!(chat_gpt.chat_context.messages.len(), 1);
}
#[test]
fn test_chat_gpt_set_message() {
let mut chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
let message = Message::new_user_message("content".to_string());
chat_gpt.set_messages(vec![message]);
assert_eq!(chat_gpt.chat_context.messages.len(), 1);
}
#[test]
fn test_chat_gpt_push_function() {
let mut chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
let function = FunctionSpecification::new("function".to_string(), None, None);
chat_gpt.push_function(function);
assert_eq!(chat_gpt.chat_context.functions.len(), 1);
}
#[test]
fn test_chat_gpt_set_function() {
let mut chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
let function = FunctionSpecification::new(
"function".to_string(),
Some("Test function".to_string()),
Some(Parameters {
type_: "string".to_string(),
properties: HashMap::new(),
required: vec![],
}),
);
chat_gpt.set_functions(vec![function]);
assert_eq!(chat_gpt.chat_context.functions.len(), 1);
let function = chat_gpt.chat_context.functions.get(0).unwrap();
assert_eq!(function.name, "function");
assert_eq!(function.description.as_ref().unwrap(), "Test function");
assert_eq!(function.parameters.as_ref().unwrap().type_, "string");
}
// Skip this test because (for now) it requires an API key and a real connection to the API
// #[tokio::test]
// async fn test_chat_gpt_completion() {
// let mut chat_gpt = ChatGPT::new("key".to_string(), None, None).unwrap();
// let message = Message::new_user_message("content".to_string());
// chat_gpt.push_message(message);
// let response = chat_gpt.completion().await.unwrap();
// assert_eq!(response.choices.len(), 1);
// }
}