1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
use bevy::prelude::*;
use std::{cmp::Ordering, sync::Arc, time::Duration};
/// Adds systems for updating the path timer and updating the position of entities along the path.
pub struct PathPlugin;
impl Plugin for PathPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Update, (tick_path_timer, update_entity_position))
.insert_resource(PathTimer::default());
}
}
/// Plugin for debugging paths.
/// Adds a system for rendering paths to the screen using Bevy's 2d primitives.
pub struct PathDebugPlugin;
impl Plugin for PathDebugPlugin {
fn build(&self, app: &mut App) {
app.add_systems(Update, debug_render_paths);
}
}
/// Checks if the prior node should be removed. Returns true if it should be removed.
fn should_remove(p1: &Vec2, p2: &Vec2, p3: &Vec2, puncture_points: &[PuncturePoint]) -> bool {
puncture_points.iter().all(|p| p.should_remove(p1, p2, p3))
}
/// Resource struct representing a timer for path updates.
#[derive(Resource)]
pub struct PathTimer {
pub timer: Timer,
}
impl Default for PathTimer {
fn default() -> Self {
Self {
timer: Timer::new(Duration::from_millis(250), TimerMode::Repeating),
}
}
}
/// Updates the path timer.
fn tick_path_timer(mut path_timer: ResMut<PathTimer>, time: Res<Time>) {
path_timer.timer.tick(time.delta());
}
/// Updates the position of entities along the path.
fn update_entity_position(
mut path_query: Query<(&mut PathType, &Transform)>,
// path_timer: Res<PathTimer>,
) {
// if path_timer.timer.just_finished() {
for (mut path_type, transform) in path_query.iter_mut() {
let current_position = transform.translation.truncate();
if ¤t_position != path_type.current_path.end() {
path_type.push(¤t_position);
}
}
// }
}
/// `PuncturePoint` represents a hole in the plane from the perspective of homotopy.
///
/// A `PuncturePoint` is a point in the plane that acts as a puncture or hole, affecting the homotopy type
/// of paths traveling around it.
///
/// Each `PuncturePoint` contains a `position` which is a `Vec2` representing the position of the point,
/// and a `name` which is a `char` that uniquely identifies the puncture point. It is used to represent
/// the traversal around the puncture point when writing the homotopy type of a path. `name.to_ascii_lowercase()`
/// is used to represent clockwise traversal around the puncture point, and `name.to_ascii_uppercase()` is used
/// to represent counterclockwise traversal.
///
/// Note that the name character is made uppercase upon instantiation.
///
/// # Examples
///
/// ```
/// use bevy::prelude::*;
/// use charred_path::piecewise_linear::PuncturePoint;
///
/// let position = Vec2::new(1.0, 2.0);
/// let puncture_point = PuncturePoint::new(position, 'a');
/// assert_eq!(puncture_point.position(), &position);
/// assert_eq!(puncture_point.name(), 'A');
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Component)]
pub struct PuncturePoint {
position: Vec2,
name: char,
}
impl PuncturePoint {
/// Represents a puncture point in the plane.
pub const fn new(position: Vec2, name: char) -> Self {
Self {
position,
name: name.to_ascii_uppercase(),
}
}
/// Returns the position of the puncture point in 2D.
pub const fn position(&self) -> &Vec2 {
&self.position
}
/// Returns the label associated to the puncture point.
pub const fn name(&self) -> char {
self.name
}
/// Checks if the puncture point is inside a triangle defined by three points.
fn is_in_triangle(&self, p1: &Vec2, p2: &Vec2, p3: &Vec2) -> bool {
let p = self.position();
let denom = (p2.y - p3.y).mul_add(p1.x - p3.x, (p3.x - p2.x) * (p1.y - p3.y));
if denom.abs() <= f32::EPSILON {
return false;
}
let a = (p2.y - p3.y).mul_add(p.x - p3.x, (p3.x - p2.x) * (p.y - p3.y)) / denom;
let b = (p3.y - p1.y).mul_add(p.x - p3.x, (p1.x - p3.x) * (p.y - p3.y)) / denom;
let c = 1.0 - a - b;
[a, b, c].iter().all(|x| (0.0..1.0).contains(x))
}
/// Checks if the puncture point should be removed based on its position relative to a triangle.
fn should_remove(&self, p1: &Vec2, p2: &Vec2, p3: &Vec2) -> bool {
let x = self.position().x;
!(self.is_in_triangle(p1, p2, p3)
|| ((p1.x..p2.x).contains(&x) && p2.x < p3.x && (x - p2.x).abs() < 1e-3)
|| ((p2.x..p1.x).contains(&x) && p3.x < p2.x && (x - p2.x).abs() < 1e-3))
// || (*self.position() - *p2).length_squared() < 5.0 && (*self.position() - *p3).length_squared() < 20.0
}
/// Updates the winding of the puncture point based on its position relative to a line segment.
///
/// Returns `Some(1)` if the line passes left -> right above the point,
/// `Some(-1)` if the line passes right -> left above the point, and
/// `None` otherwise.
fn winding_update(&self, start: &Vec2, end: &Vec2) -> Option<i32> {
let position = self.position();
let cross_product = (end.y - start.y).mul_add(
position.x - start.x,
-((position.y - start.y) * (end.x - start.x)),
);
// Check if position is below the line segment
if cross_product > 0. && (start.x..end.x).contains(&position.x) {
return Some(1);
}
if cross_product < 0. && (end.x..start.x).contains(&position.x) {
return Some(-1);
}
None
}
}
#[derive(Debug, Clone, PartialEq, Component)]
pub struct PLPath {
nodes: Vec<Vec2>,
}
impl PLPath {
/// Gets the first node, if there is one.
///
/// ## Panics
/// This will panic if `nodes` is empty.
fn start(&self) -> &Vec2 {
self.nodes.first().expect("Couldn't get the start point")
}
/// Gets the last node, if there is one.
///
/// ## Panics
/// This will panic if `nodes` is empty.
fn end(&self) -> &Vec2 {
self.nodes.last().expect("Couldn't get the end point")
}
///
fn push(&mut self, position: &Vec2) {
self.nodes.push(*position);
}
/// Appends the XY-position of a Transform
pub fn push_transform(&mut self, transform: Transform) {
self.nodes.push(transform.translation.truncate());
}
/// A new path from a list of nodes.
pub fn new(nodes: impl Into<Vec<Vec2>>) -> Self {
Self {
nodes: nodes.into(),
}
}
/// A straight line path from start to end.
pub fn line(start: Vec2, end: Vec2) -> Self {
Self {
nodes: vec![start, end],
}
}
/// Path whose nodes are reversed from `self.nodes`.
pub fn reverse(&self) -> Self {
let mut reversed_nodes = self.nodes.clone();
reversed_nodes.reverse();
Self {
nodes: reversed_nodes,
}
}
/// Returns a PLPath whose nodes are `self.nodes` concatenated by `other.nodes`.
pub fn concatenate(&self, other: &Self) -> Self {
let mut nodes = self.nodes.clone();
nodes.extend(other.nodes.clone());
Self { nodes }
}
/// An iterable containing each linear component of the path as a Segment2d.
/// Used to display the PL path as a loop for debugging purposes.
fn to_segment2d_iter(&self) -> impl Iterator<Item = (Segment2d, Vec2)> + '_ {
let last = if self.start() != self.end() {
Some(Segment2d::from_points(*self.end(), *self.start()))
} else {
None
};
self.nodes
.windows(2)
.filter_map(|pair| {
let point1 = pair[0];
let point2 = pair[1];
if point1 == point2 {
None
} else {
let segment = Segment2d::from_points(point1, point2);
Some(segment)
}
})
.chain(last)
}
}
/// Represents the homotopy type of a path in a punctured plane.
///
/// The `PathType` struct encapsulates the current path, puncture points, and the word representation
/// of the homotopy type. It provides methods to update the path and retrieve the word representation.
///
/// # Fields
///
/// - `current_path`: The current path represented as a `PLPath` (piecewise linear path).
/// - `puncture_points`: A shared reference to an array of `PuncturePoint` objects representing the puncture points in the plane.
/// - `word`: The word representation of the homotopy type, which is automatically updated whenever the path is modified.
///
/// # Examples
///
/// ```
/// use your_library::{PathType, PLPath, PuncturePoint};
/// use std::sync::Arc;
///
/// let puncture_points = vec![
/// PuncturePoint { position: (0.0, 0.0), name: 'A' },
/// PuncturePoint { position: (1.0, 1.0), name: 'B' },
/// ];
/// let puncture_points = Arc::new(puncture_points);
///
/// let initial_path = PLPath::new();
/// let mut path_type = PathType {
/// current_path: initial_path,
/// puncture_points,
/// word: String::new(),
/// };
///
/// // Update the path
/// let new_path = PLPath::from_points(&[(0.0, 0.0), (1.0, 0.0), (1.0, 1.0)]);
/// path_type.update_path(new_path);
///
/// // Get the updated word representation
/// println!("Word representation: {}", path_type.word());
/// ```
#[derive(Debug, Clone, Component)]
pub struct PathType {
current_path: PLPath,
puncture_points: Arc<[PuncturePoint]>,
word: String,
}
impl PathType {
pub fn word_as_str(&self) -> &str {
&self.word
}
pub fn word(&self) -> String {
self.word.clone()
}
pub fn new(start: Vec2, puncture_points: Vec<PuncturePoint>) -> Self {
Self {
current_path: PLPath::new(vec![start]),
puncture_points: puncture_points.into(),
word: String::new(),
}
}
pub fn from_path(path: PLPath, puncture_points: Arc<[PuncturePoint]>) -> Self {
let mut path_type = Self {
current_path: path,
puncture_points,
word: String::new(),
};
path_type.update_word();
path_type
}
#[must_use]
pub fn concatenate(&self, other: &PLPath) -> Self {
Self::from_path(
self.current_path.concatenate(other),
self.puncture_points.clone(),
)
}
fn pop(&mut self) -> Option<Vec2> {
self.current_path.nodes.pop()
}
/// Appends a 2d position to the end of the current path.
pub fn push(&mut self, point: &Vec2) {
if let [.., p1, p2] = &self.current_path.nodes[..] {
if should_remove(p1, p2, point, &self.puncture_points) {
self.pop();
self.push(point);
} else {
self.current_path.push(point);
}
} else {
self.current_path.push(point);
}
self.update_word();
}
/// Updates the word representing the homotopy type of the path.
/// Returns the updated word.
pub fn update_word(&mut self) -> String {
let mut word = String::new();
let full_loop: Vec<&Vec2> = self
.current_path
.nodes
.iter()
.chain(std::iter::once(self.current_path.start()))
.collect();
for segment in full_loop.windows(2) {
let (start, end) = (segment[0], segment[1]);
let punctures: Vec<&PuncturePoint> = match start.x.partial_cmp(&end.x) {
Some(Ordering::Less) => self.puncture_points.iter().collect(),
Some(Ordering::Greater) => self
.puncture_points
.iter()
//.rev()
.collect(),
_ => continue,
};
for puncture in punctures {
if let Some(n) = puncture.winding_update(start, end) {
match n {
1 => word.push(puncture.name.to_ascii_lowercase()),
-1 => word.push(puncture.name.to_ascii_uppercase()),
_ => {}
}
}
}
}
simplify_word(&mut word);
self.word = word.clone();
word
}
}
fn simplify_word(word: &mut String) {
let mut i = 0;
while i + 1 < word.len() {
let a = word.as_bytes()[i] as char;
let b = word.as_bytes()[i + 1] as char;
if a.to_ascii_uppercase() == b.to_ascii_uppercase() && a != b {
word.drain(i..i + 2);
i = i.saturating_sub(1);
} else {
i += 1;
}
}
}
/// This visualizes the piecewise-linear paths.
fn debug_render_paths(path_types: Query<&PathType>, mut gizmos: Gizmos) {
for path_type in path_types.iter() {
if path_type.current_path.nodes.len() > 1 {
for segment in path_type.current_path.to_segment2d_iter() {
gizmos.primitive_2d(segment.0, segment.1, 0.0, Color::WHITE);
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_is_point_in_triangle() {
let p1 = &Vec2::new(0.0, 0.0);
let p2 = &Vec2::new(4.0, 0.0);
let p3 = &Vec2::new(2.0, 4.0);
let puncture_point_inside = PuncturePoint::new(*p1, 'A');
let puncture_point_inside_2 = PuncturePoint::new(*p2, 'B');
let puncture_point_outside = PuncturePoint::new(*p3, 'A');
assert!(puncture_point_inside.is_in_triangle(p1, p2, p3));
assert!(puncture_point_inside_2.is_in_triangle(p1, p2, p3));
assert!(!puncture_point_outside.is_in_triangle(p1, p2, p3));
}
#[test]
fn test_simplify_word_with_multibyte_chars() {
let mut word = "ßAa".to_string();
simplify_word(&mut word);
assert_eq!(word, "ß");
}
}