chalk_solve/infer/invert.rs
1use chalk_derive::FallibleTypeFolder;
2use chalk_ir::fold::shift::Shift;
3use chalk_ir::fold::{TypeFoldable, TypeFolder};
4use chalk_ir::interner::HasInterner;
5use chalk_ir::interner::Interner;
6use chalk_ir::*;
7use rustc_hash::FxHashMap;
8
9use super::canonicalize::Canonicalized;
10use super::{EnaVariable, InferenceTable};
11
12impl<I: Interner> InferenceTable<I> {
13 /// Converts `value` into a "negation" value -- meaning one that,
14 /// if we can find any answer to it, then the negation fails. For
15 /// goals that do not contain any free variables, then this is a
16 /// no-op operation.
17 ///
18 /// If `value` contains any existential variables that have not
19 /// yet been assigned a value, then this function will return
20 /// `None`, indicating that we cannot prove negation for this goal
21 /// yet. This follows the approach in Clark's original
22 /// [negation-as-failure paper][1], where negative goals are only
23 /// permitted if they contain no free (existential) variables.
24 ///
25 /// [1]: https://www.doc.ic.ac.uk/~klc/NegAsFailure.pdf
26 ///
27 /// Restricting free existential variables is done because the
28 /// semantics of such queries is not what you expect: it basically
29 /// treats the existential as a universal. For example, consider:
30 ///
31 /// ```rust,ignore
32 /// struct Vec<T> {}
33 /// struct i32 {}
34 /// struct u32 {}
35 /// trait Foo {}
36 /// impl Foo for Vec<u32> {}
37 /// ```
38 ///
39 /// If we ask `exists<T> { not { Vec<T>: Foo } }`, what should happen?
40 /// If we allow negative queries to be definitively answered even when
41 /// they contain free variables, we will get a definitive *no* to the
42 /// entire goal! From a logical perspective, that's just wrong: there
43 /// does exists a `T` such that `not { Vec<T>: Foo }`, namely `i32`. The
44 /// problem is that the proof search procedure is actually trying to
45 /// prove something stronger, that there is *no* such `T`.
46 ///
47 /// An additional complication arises around free universal
48 /// variables. Consider a query like `not { !0 = !1 }`, where
49 /// `!0` and `!1` are placeholders for universally quantified
50 /// types (i.e., `TyKind::Placeholder`). If we just tried to
51 /// prove `!0 = !1`, we would get false, because those types
52 /// cannot be unified -- this would then allow us to conclude that
53 /// `not { !0 = !1 }`, i.e., `forall<X, Y> { not { X = Y } }`, but
54 /// this is clearly not true -- what if X were to be equal to Y?
55 ///
56 /// Interestingly, the semantics of existential variables turns
57 /// out to be exactly what we want here. So, in addition to
58 /// forbidding existential variables in the original query, the
59 /// `negated` query also converts all universals *into*
60 /// existentials. Hence `negated` applies to `!0 = !1` would yield
61 /// `exists<X,Y> { X = Y }` (note that a canonical, i.e. closed,
62 /// result is returned). Naturally this has a solution, and hence
63 /// `not { !0 = !1 }` fails, as we expect.
64 ///
65 /// (One could imagine converting free existentials into
66 /// universals, rather than forbidding them altogether. This would
67 /// be conceivable, but overly strict. For example, the goal
68 /// `exists<T> { not { ?T: Clone }, ?T = Vec<i32> }` would come
69 /// back as false, when clearly this is true. This is because we
70 /// would wind up proving that `?T: Clone` can *never* be
71 /// satisfied (which is false), when we only really care about
72 /// `?T: Clone` in the case where `?T = Vec<i32>`. The current
73 /// version would delay processing the negative goal (i.e., return
74 /// `None`) until the second unification has occurred.)
75 pub fn invert<T>(&mut self, interner: I, value: T) -> Option<T>
76 where
77 T: TypeFoldable<I> + HasInterner<Interner = I>,
78 {
79 let Canonicalized {
80 free_vars,
81 quantified,
82 ..
83 } = self.canonicalize(interner, value);
84
85 // If the original contains free existential variables, give up.
86 if !free_vars.is_empty() {
87 return None;
88 }
89
90 // If this contains free universal variables, replace them with existentials.
91 assert!(quantified.binders.is_empty(interner));
92 let inverted = quantified
93 .value
94 .try_fold_with(&mut Inverter::new(interner, self), DebruijnIndex::INNERMOST)
95 .unwrap();
96 Some(inverted)
97 }
98
99 /// As `negated_instantiated`, but canonicalizes before
100 /// returning. Just a convenience function.
101 pub fn invert_then_canonicalize<T>(&mut self, interner: I, value: T) -> Option<Canonical<T>>
102 where
103 T: TypeFoldable<I> + HasInterner<Interner = I>,
104 {
105 let snapshot = self.snapshot();
106 let result = self.invert(interner, value);
107 let result = result.map(|r| self.canonicalize(interner, r).quantified);
108 self.rollback_to(snapshot);
109 result
110 }
111}
112
113#[derive(FallibleTypeFolder)]
114struct Inverter<'q, I: Interner> {
115 table: &'q mut InferenceTable<I>,
116 inverted_ty: FxHashMap<PlaceholderIndex, EnaVariable<I>>,
117 inverted_lifetime: FxHashMap<PlaceholderIndex, EnaVariable<I>>,
118 interner: I,
119}
120
121impl<'q, I: Interner> Inverter<'q, I> {
122 fn new(interner: I, table: &'q mut InferenceTable<I>) -> Self {
123 Inverter {
124 table,
125 inverted_ty: FxHashMap::default(),
126 inverted_lifetime: FxHashMap::default(),
127 interner,
128 }
129 }
130}
131
132impl<'i, I: Interner> TypeFolder<I> for Inverter<'i, I> {
133 fn as_dyn(&mut self) -> &mut dyn TypeFolder<I> {
134 self
135 }
136
137 fn fold_free_placeholder_ty(
138 &mut self,
139 universe: PlaceholderIndex,
140 _outer_binder: DebruijnIndex,
141 ) -> Ty<I> {
142 let table = &mut self.table;
143 self.inverted_ty
144 .entry(universe)
145 .or_insert_with(|| table.new_variable(universe.ui))
146 .to_ty(TypeFolder::interner(self))
147 .shifted_in(TypeFolder::interner(self))
148 }
149
150 fn fold_free_placeholder_lifetime(
151 &mut self,
152 universe: PlaceholderIndex,
153 _outer_binder: DebruijnIndex,
154 ) -> Lifetime<I> {
155 let table = &mut self.table;
156 self.inverted_lifetime
157 .entry(universe)
158 .or_insert_with(|| table.new_variable(universe.ui))
159 .to_lifetime(TypeFolder::interner(self))
160 .shifted_in(TypeFolder::interner(self))
161 }
162
163 fn forbid_free_vars(&self) -> bool {
164 true
165 }
166
167 fn forbid_inference_vars(&self) -> bool {
168 true
169 }
170
171 fn interner(&self) -> I {
172 self.interner
173 }
174}