1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
//! Cgroup-fs is a minimal wrapper around Linux Control Groups (cgroups) filesystem (usually
//! mounted as `/sys/fs/cgroup`).
//!
//! # Examples
//!
//! ## Get memory usage from root cgroup
//!
//! ```
//! let root_cgroup = cgroups_fs::CgroupName::new("");
//! let root_memory_cgroup = cgroups_fs::Cgroup::new(&root_cgroup, "memory");
//! println!(
//!     "Current memory usage is {} bytes",
//!     root_memory_cgroup.get_value::<u64>("memory.usage_in_bytes").unwrap()
//! );
//! ```
//!
//! ## Measure memory usage of a child process
//!
//! Read [the `CgroupsCommandExt` documentation].
//!
//! [the `CgroupsCommandExt` documentation]: trait.CgroupsCommandExt.html#impl-CgroupsCommandExt
#![cfg(target_os = "linux")]

use std::fs;
use std::io;
use std::os::unix::process::CommandExt;
use std::path::{Path, PathBuf};

/// A common structure holding a cgroups name (path).
#[derive(Debug)]
pub struct CgroupName {
    mount_point: PathBuf,
    name: PathBuf,
}

impl CgroupName {
    /// Defines a new cgroups name.
    ///
    /// Notes:
    /// * It does not create any cgroups. It is just an API abstraction layer. Learn more about
    /// [`Cgroup::new`], [`Cgroup::create`], [`Cgroup::remove`], and [`AutomanagedCgroup::init`]
    /// methods.
    ///
    /// [`Cgroup::new`]: struct.Cgroup.html#method.new
    /// [`Cgroup::create`]: struct.Cgroup.html#method.create
    /// [`Cgroup::remove`]: struct.Cgroup.html#method.remove
    /// [`AutomanagedCgroup::init`]: struct.AutomanagedCgroup.html#method.init
    pub fn new<P>(name: P) -> Self
    where
        P: AsRef<Path>,
    {
        Self {
            // TODO: auto-discover the cgroups FS mount-point
            mount_point: "/sys/fs/cgroup".into(),
            name: name.as_ref().to_path_buf(),
        }
    }
}

/// A controller of a specific cgroups namespace.
///
/// This type supports a number of operations for manipulating with a cgroups namespace.
#[derive(Debug)]
pub struct Cgroup {
    root: PathBuf,
}

impl Cgroup {
    /// Defines a cgroup relation.
    ///
    /// Notes:
    /// * It does not create any cgroups. It is just an API abstraction layer. Learn more about
    /// [`Cgroup::create`], [`Cgroup::remove`], and [`AutomanagedCgroup::init`] methods.
    ///
    /// [`Cgroup::create`]: #method.create
    /// [`Cgroup::remove`]: #method.remove
    /// [`AutomanagedCgroup::init`]: struct.AutomanagedCgroup.html#method.init
    pub fn new(cgroup_name: &CgroupName, subsystem: &str) -> Self {
        Self {
            root: cgroup_name
                .mount_point
                .join(subsystem)
                .join(&cgroup_name.name),
        }
    }

    /// Creates a cgroups namespace.
    ///
    /// Notes:
    /// * Keep in mind the usual filesystem permissions (owner, group, and mode bits).
    pub fn create(&self) -> io::Result<()> {
        fs::create_dir(&self.root)
    }

    /// Removes a cgroups namespace.
    ///
    /// Notes:
    /// * This method will fail if there are nested cgroups.
    /// * Keep in mind the usual filesystem permissions (owner, group, and mode bits).
    pub fn remove(&self) -> io::Result<()> {
        fs::remove_dir(&self.root)
    }

    /// Sets a binary or string value to the cgroup control file.
    pub fn set_raw_value<V>(&self, key: &str, value: V) -> io::Result<()>
    where
        V: AsRef<[u8]>,
    {
        fs::write(self.root.join(key), value)
    }

    /// Sets a value to the cgroup control file.
    pub fn set_value<V>(&self, key: &str, value: V) -> io::Result<()>
    where
        V: Copy + ToString,
    {
        self.set_raw_value(key, value.to_string())
    }

    /// Gets a string value from cgroup control file.
    pub fn get_raw_value(&self, key: &str) -> io::Result<String> {
        fs::read_to_string(self.root.join(key))
    }

    /// Gets a value from cgroup control file.
    pub fn get_value<T>(&self, key: &str) -> io::Result<T>
    where
        T: std::str::FromStr,
    {
        self.get_raw_value(key)?
            .trim_end()
            .parse()
            .map_err(|_| io::Error::new(io::ErrorKind::Other, "could not parse the value"))
    }

    fn tasks_absolute_path(&self) -> PathBuf {
        self.root.join("tasks")
    }

    /// Attaches a task (thread) to the cgroup.
    pub fn add_task(&self, pid: nix::unistd::Pid) -> io::Result<()> {
        fs::write(self.tasks_absolute_path(), pid.to_string())
    }

    /// Lists tasks (threads) attached to the cgroup.
    pub fn get_tasks(&self) -> io::Result<Vec<nix::unistd::Pid>> {
        Ok(fs::read_to_string(self.tasks_absolute_path())?
            .split_whitespace()
            .map(|pid| nix::unistd::Pid::from_raw(pid.parse().unwrap()))
            .collect())
    }

    /// Kills (SIGKILL) all the attached to the cgroup tasks.
    pub fn kill_all_tasks(&self) -> io::Result<()> {
        for _ in 0..100 {
            let tasks = self.get_tasks()?;
            if tasks.is_empty() {
                return Ok(());
            }
            for task in tasks {
                nix::sys::signal::kill(task, nix::sys::signal::Signal::SIGKILL).is_ok();
            }
            std::thread::sleep(std::time::Duration::from_micros(1));
        }
        Err(io::Error::new(
            io::ErrorKind::Other,
            "child subprocess(es) survived SIGKILL",
        ))
    }
}

/// An automatically managed controller of a specific cgroups subsystem.
///
/// It is a wrapper around [`Cgroup`] type which automatically creates (on [`init`]) and removes
/// (on [`drop`]) a cgroup in a given subsystem.
///
/// Since it is a wrapper, all the methods from [`Cgroup`] type are directly available for
/// `AutomanagedCgroup` instances.
///
/// [`Cgroup`]: struct.Cgroup.html
/// [`init`]: struct.AutomanagedCgroup.html#method.init
/// [`drop`]: struct.AutomanagedCgroup.html#impl-Drop
pub struct AutomanagedCgroup {
    inner: Cgroup,
}

impl AutomanagedCgroup {
    /// Inits a cgroup, which means that it creates a cgroup in a given subsystem.
    ///
    /// Notes:
    /// * If there is an existing cgroup, it will be recreated from scratch. If that is not what
    ///   you what, consider using [`Cgroup`] type instead.
    /// * The cgroup will be automatically removed once the `AutomanagedCgroup` instance is
    ///   dropped.
    ///
    /// [`Cgroup`]: struct.Cgroup.html
    pub fn init(cgroup_name: &CgroupName, subsystem: &str) -> io::Result<Self> {
        let inner = Cgroup::new(cgroup_name, subsystem);
        if let Err(error) = inner.create() {
            match inner.get_tasks() {
                Err(_) => return Err(error),
                Ok(tasks) => {
                    if !tasks.is_empty() {
                        return Err(error);
                    }
                }
            }
            inner.remove().is_ok();
            inner.create()?;
        }
        Ok(Self { inner })
    }
}

impl std::ops::Deref for AutomanagedCgroup {
    type Target = Cgroup;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl AsRef<Cgroup> for AutomanagedCgroup {
    fn as_ref(&self) -> &Cgroup {
        &self
    }
}

impl Drop for AutomanagedCgroup {
    fn drop(&mut self) {
        drop(self.inner.remove());
    }
}

pub trait CgroupsCommandExt {
    fn cgroups(&mut self, cgroups: &[impl AsRef<Cgroup>]) -> &mut Self;
}

/// `std::process::Command` extension which adds `cgroups` helper method.
///
/// # Example
///
/// ```no_run
/// let my_cgroup = cgroups_fs::CgroupName::new("my-cgroup");
/// let my_memory_cgroup = cgroups_fs::AutomanagedCgroup::init(&my_cgroup, "memory").unwrap();
///
/// use cgroups_fs::CgroupsCommandExt;
/// let output = std::process::Command::new("echo")
///     .arg("Hello world")
///     .cgroups(&[&my_memory_cgroup])
///     .output()
///     .expect("Failed to execute command");
///
/// println!(
///     "The echo process used {} bytes of RAM.",
///     my_memory_cgroup.get_value::<u64>("memory.max_usage_in_bytes").unwrap()
/// );
/// ```
impl CgroupsCommandExt for std::process::Command {
    fn cgroups(&mut self, cgroups: &[impl AsRef<Cgroup>]) -> &mut Self {
        let tasks_paths = cgroups
            .iter()
            .map(|cgroup| cgroup.as_ref().tasks_absolute_path())
            .collect::<Vec<PathBuf>>();
        self.before_exec(move || {
            let pid = std::process::id().to_string();
            for tasks_path in &tasks_paths {
                fs::write(tasks_path, &pid)?;
            }
            Ok(())
        })
    }
}