1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! Utils crate where common behaviour for computing dates are shared

use crate::{
    calendars::Calendar,
    constants,
    datetime::CFDatetime,
    datetimes::traits::IsLeap,
    duration::CFDuration,
    parser::{parse_cf_time, Unit},
};
use std::time::Duration;

/// Calculates the timestamp from the given year, month, and day.
///
/// # Arguments
///
/// * `year` - The year.
/// * `month` - The month.
/// * `day` - The day.
///
/// # Returns
///
/// The calculated timestamp.
///
/// # Errors
///
/// Returns an error if there was an issue calculating the timestamp.
pub fn get_timestamp_from_ymd<T: IsLeap>(
    year: i64,
    month: u8,
    day: u8,
) -> Result<i64, crate::errors::Error> {
    let mut timestamp: i64 = 0;

    // Calculate years

    let mut current_year: i64 = year;
    loop {
        if current_year == constants::UNIX_DEFAULT_YEAR {
            break;
        }
        // We have to look at the preceding year. For example if year == 1972
        // we have to look from 1971 to 1972
        let year_to_look_at = current_year - (current_year > constants::UNIX_DEFAULT_YEAR) as i64;
        let seconds_in_year: i64 = if T::is_leap(year_to_look_at) {
            constants::SECONDS_PER_YEAR_LEAP
        } else {
            constants::SECONDS_PER_YEAR_NON_LEAP
        };

        if current_year > constants::UNIX_DEFAULT_YEAR {
            timestamp += seconds_in_year;
            current_year -= 1;
        } else {
            timestamp -= seconds_in_year;
            current_year += 1;
        }
    }

    // Calculate months
    let mut current_month = 0;
    loop {
        if current_month + 1 == month {
            break;
        }
        if T::is_leap(year) {
            timestamp += constants::DAYS_PER_MONTH_LEAP[(current_month) as usize] as i64
                * constants::SECS_PER_DAY as i64;
        } else {
            timestamp += constants::DAYS_PER_MONTH[(current_month) as usize] as i64
                * constants::SECS_PER_DAY as i64;
        }
        current_month += 1;
    }

    // Calculate days
    timestamp += (day as i64 - 1) * constants::SECS_PER_DAY as i64;

    Ok(timestamp)
}

/// Converts a timestamp into hours, minutes, and seconds.
///
/// # Arguments
///
/// * `timestamp` - The timestamp to convert.
///
/// # Returns
///
/// A tuple containing the hours, minutes, and seconds.
pub fn get_hms_from_timestamp(timestamp: i64) -> (u8, u8, u8) {
    let _mod_sec = constants::SECS_PER_DAY as i64;
    let seconds = (timestamp % constants::SECS_PER_DAY as i64 + constants::SECS_PER_DAY as i64)
        % constants::SECS_PER_DAY as i64;
    let sec = (seconds % 60) as u8;
    let min = ((seconds / 60) % 60) as u8;
    let hour = ((seconds / 3600) % 24) as u8;
    (hour, min, sec)
}
/// Converts a timestamp to the year, month, day, hour, minute, and second components.
///
/// # Arguments
///
/// * `timestamp` - The timestamp to convert
///
/// # Generic Parameters
///
/// * `T` - A type that implements the `IsLeap` trait, used to determine if a year is a leap year
///
/// # Returns
///
/// A tuple containing the year, month, day, hour, minute, and second components of the timestamp.
pub fn get_ymd_hms_from_timestamp<T: IsLeap>(timestamp: i64) -> (i64, u8, u8, u8, u8, u8) {
    let mut remaining_timestamp = timestamp;
    let mut current_year = constants::UNIX_DEFAULT_YEAR;

    // Determine the direction (past or future)
    let direction = if timestamp >= 0 { 1 } else { -1 };

    loop {
        let year_to_look_at = if current_year > constants::UNIX_DEFAULT_YEAR {
            current_year
        } else {
            current_year - 1
        };
        let seconds_in_year: i64 = if T::is_leap(year_to_look_at) {
            constants::SECONDS_PER_YEAR_LEAP
        } else {
            constants::SECONDS_PER_YEAR_NON_LEAP
        };

        let new_remaining = remaining_timestamp - direction * seconds_in_year;

        // After UNIX epoch we can stop
        if direction == 1 && (new_remaining < 0) {
            break;
        }
        // Before UNIX epoch we substract one year if needed
        // This ensure remaining_timestamp is positive or equals 0
        else if direction == -1 && (new_remaining >= 0) {
            remaining_timestamp = new_remaining;
            current_year += direction;
            break;
        }
        remaining_timestamp = new_remaining;
        current_year += direction;
    }

    // Calculate months
    // remaining_timestamp is positive or equals 0
    let mut month: i64 = 0;
    loop {
        let days_in_month: i64 = if T::is_leap(current_year) {
            constants::DAYS_PER_MONTH_LEAP[month as usize] as i64
        } else {
            constants::DAYS_PER_MONTH[month as usize] as i64
        };
        let seconds_in_month = days_in_month * constants::SECS_PER_DAY as i64;

        if remaining_timestamp < seconds_in_month {
            break;
        }
        remaining_timestamp -= seconds_in_month;
        month += 1;
    }

    // Calculate days
    let day = (remaining_timestamp / (constants::SECS_PER_DAY as i64)) as u8;

    let (hour, min, sec) = get_hms_from_timestamp(remaining_timestamp);
    (current_year, month as u8 + 1, day + 1, hour, min, sec)
}

/// Determines if a given year is a leap year according to the Gregorian calendar.
///
/// # Arguments
///
/// * `year` - The year to be checked.
///
/// # Returns
///
/// Returns `true` if the year is a leap year, `false` otherwise.
pub fn is_leap_gregorian(year: i64) -> bool {
    // Optimization : Adds 1 for negative years, 0 for non-negative years
    // We extract the sign bit from the year i64 variable
    let f_year = ((year >> 63) & 1) + year;
    (f_year % 400 == 0) || ((f_year % 4 == 0) && (f_year % 100 != 0))
}

/// Determines if a given year is a leap year in the Julian calendar.
///
/// # Arguments
///
/// * `year` - The year to check for leapness.
///
/// # Returns
///
/// * `true` if the year is a leap year, `false` otherwise.
pub fn is_leap_julian(year: i64) -> bool {
    // Optimization : Adds 1 for negative years, 0 for non-negative years
    // We extract the sign bit from the year i64 variable
    (((year >> 63) & 1) + year) % 4 == 0
}

fn extract_seconds_and_nanoseconds(seconds: f32) -> (u64, u32) {
    let duration = Duration::from_secs_f32(seconds);
    let secs = duration.as_secs();
    let nanosecs = duration.subsec_nanos();

    (secs, nanosecs)
}

/// Converts the given hour, minute, and second values into a timestamp.
///
/// # Arguments
///
/// * `hour` - The hour value (0-23).
/// * `min` - The minute value (0-59).
/// * `sec` - The second value (0.0-59.999...).
///
/// # Returns
///
/// A tuple containing the total number of seconds and the number of nanoseconds.
///
/// # Errors
///
/// Returns an error if any of the input values are out of bounds.
pub fn get_timestamp_from_hms(
    hour: u8,
    min: u8,
    sec: f32,
) -> Result<(i64, u32), crate::errors::Error> {
    if hour > 23 {
        return Err(crate::errors::Error::InvalidTime(
            format!("Hour {hour} is out of bounds").to_string(),
        ));
    }
    if min > 59 {
        return Err(crate::errors::Error::InvalidTime(
            format!("Minute {min} is out of bounds").to_string(),
        ));
    }
    if !(0.0..60.0).contains(&sec) {
        return Err(crate::errors::Error::InvalidTime(
            format!("Second {sec} is out of bounds").to_string(),
        ));
    }
    let (round_seconds, nanoseconds) = extract_seconds_and_nanoseconds(sec);
    let total_seconds = (hour as u32 * constants::SECS_PER_HOUR
        + min as u32 * constants::SECS_PER_MINUTE
        + round_seconds as u32)
        % constants::SECS_PER_DAY;

    Ok((total_seconds as i64, nanoseconds))
}

pub fn get_datetime_and_unit_from_units(
    units: &str,
    calendar: Calendar,
) -> Result<(CFDatetime, Unit), crate::errors::Error> {
    let parsed_cf_time = parse_cf_time(units)?;
    let (year, month, day) = parsed_cf_time.datetime.ymd;
    let (hour, minute, second) = match parsed_cf_time.datetime.hms {
        Some(hms) => (hms.0, hms.1, hms.2),
        None => (0, 0, 0.0),
    };
    let cf_datetime = CFDatetime::from_ymd_hms(year, month, day, hour, minute, second, calendar)?;
    let unit = parsed_cf_time.unit;
    Ok((cf_datetime, unit))
}
/// Normalize the given number of nanoseconds into seconds and remaining nanoseconds.
///
/// # Arguments
///
/// * `nanoseconds` - The number of nanoseconds to normalize.
///
/// # Returns
///
/// A tuple containing the remaining seconds and remaining nanoseconds.
///
/// # Examples
///
/// ```
/// use cftime_rs::utils::normalize_nanoseconds;
/// let nanoseconds = 1_500_000_000;
/// let (seconds, remaining_nanoseconds) = normalize_nanoseconds(nanoseconds);
/// assert_eq!(seconds, 1);
/// assert_eq!(remaining_nanoseconds, 500_000_000);
/// ```
///
/// ```
/// use cftime_rs::utils::normalize_nanoseconds;
/// let nanoseconds = -2_500_000_000;
/// let (seconds, remaining_nanoseconds) = normalize_nanoseconds(nanoseconds);
/// assert_eq!(seconds, -3);
/// assert_eq!(remaining_nanoseconds, 500_000_000);
/// ```
pub fn normalize_nanoseconds(nanoseconds: i64) -> (i64, u32) {
    // Calculate the number of remaining seconds
    let mut remaining_seconds = nanoseconds / 1e9 as i64;

    // Calculate the number of remaining nanoseconds
    let remaining_nanoseconds: i64 = if remaining_seconds < 0 {
        // If the remaining seconds is negative, subtract 1 and calculate the remaining nanoseconds accordingly
        remaining_seconds -= 1;
        (nanoseconds + (remaining_seconds.abs() * 1_000_000_000)) % 1_000_000_000
    } else {
        // If the remaining seconds is positive or zero, calculate the remaining nanoseconds directly
        nanoseconds % 1e9 as i64
    };
    (remaining_seconds, remaining_nanoseconds as u32)
}

/// Converts a unit of time to its corresponding encoded value.
///
/// # Arguments
///
/// * `unit` - The unit of time to encode.
/// * `duration` - The duration to encode.
///
/// # Returns
///
/// The encoded value of the unit of time.
pub fn unit_to_encode(unit: &Unit, duration: CFDuration) -> f64 {
    match unit {
        Unit::Year => duration.num_years(),     // Convert to years
        Unit::Month => duration.num_months(),   // Convert to months
        Unit::Day => duration.num_days(),       // Convert to days
        Unit::Hour => duration.num_hours(),     // Convert to hours
        Unit::Minute => duration.num_minutes(), // Convert to minutes
        Unit::Second => duration.num_seconds(), // Convert to seconds
        Unit::Millisecond => duration.num_milliseconds(), // Convert to milliseconds
        Unit::Microsecond => duration.num_microseconds(), // Convert to microseconds
        Unit::Nanosecond => duration.num_nanoseconds(), // Convert to nanoseconds
    }
}