cervo_core/inferer/
fixed.rs1use super::{helpers, Inferer};
2use crate::{batcher::ScratchPadView, model_api::ModelApi};
3use anyhow::{Context, Result};
4use tract_core::prelude::{tvec, TValue, TVec, Tensor, TractResult, TypedModel, TypedSimplePlan};
5use tract_hir::prelude::InferenceModel;
6
7pub struct FixedBatchInferer {
27 model_api: ModelApi,
28 models: Vec<BatchedModel>,
29}
30
31fn fixup_sizes(sizes: &[usize]) -> Vec<usize> {
32 let mut sizes = sizes.to_vec();
33 if !sizes.contains(&1) {
34 sizes.push(1);
35 }
36 sizes.sort_unstable();
37 sizes.reverse();
38
39 sizes
40}
41
42impl FixedBatchInferer {
43 pub fn from_model(model: InferenceModel, sizes: &[usize]) -> TractResult<Self> {
49 let model_api = ModelApi::for_model(&model)?;
50
51 let sizes = fixup_sizes(sizes);
52
53 let models = sizes
54 .into_iter()
55 .map(|size| {
56 helpers::build_model(model.clone(), &model_api.inputs, size as i32)
57 .map(|m| BatchedModel { size, plan: m })
58 })
59 .collect::<Result<Vec<_>>>()?;
60
61 Ok(Self { models, model_api })
62 }
63
64 pub fn from_typed(model: TypedModel, sizes: &[usize]) -> TractResult<Self> {
70 let model_api = ModelApi::for_typed_model(&model.clone())?;
71
72 let sizes = fixup_sizes(sizes);
73
74 let models = sizes
75 .into_iter()
76 .map(|size| {
77 helpers::build_typed(model.clone(), size as i32)
78 .map(|m| BatchedModel { size, plan: m })
79 })
80 .collect::<Result<Vec<_>>>()?;
81
82 Ok(Self { models, model_api })
83 }
84}
85
86impl Inferer for FixedBatchInferer {
87 fn infer_raw(&self, batch: &mut ScratchPadView<'_>) -> Result<(), anyhow::Error> {
88 let plan = self
89 .models
90 .iter()
91 .find(|plan| plan.size == batch.len())
92 .with_context(|| anyhow::anyhow!("looking for a plan with size {:?}", batch.len()))?;
93
94 plan.execute(batch, &self.model_api)
95 }
96
97 fn select_batch_size(&self, max_count: usize) -> usize {
98 self.models
100 .iter()
101 .map(|plan| plan.size)
102 .find(|size| *size <= max_count)
103 .unwrap()
104 }
105
106 fn raw_input_shapes(&self) -> &[(String, Vec<usize>)] {
107 &self.model_api.inputs
108 }
109
110 fn raw_output_shapes(&self) -> &[(String, Vec<usize>)] {
111 &self.model_api.outputs
112 }
113
114 fn begin_agent(&self, _id: u64) {}
115 fn end_agent(&self, _id: u64) {}
116}
117
118struct BatchedModel {
119 size: usize,
120 plan: TypedSimplePlan<TypedModel>,
121}
122
123impl BatchedModel {
124 fn build_inputs(
125 &self,
126 batch: &mut ScratchPadView<'_>,
127 model_api: &ModelApi,
128 ) -> Result<TVec<TValue>> {
129 assert_eq!(batch.len(), self.size);
130 let size = self.size;
131
132 let mut inputs = TVec::default();
133
134 for (idx, (name, shape)) in model_api.inputs.iter().enumerate() {
135 assert_eq!(name, batch.input_name(idx));
136
137 let mut full_shape = tvec![size];
138 full_shape.extend_from_slice(shape);
139
140 let total_count: usize = full_shape.iter().product();
141 assert_eq!(
142 total_count,
143 batch.input_slot(idx).len(),
144 "mismatched number of features: expected {:?}, got {:?} for shape {:?}",
145 total_count,
146 batch.input_slot(idx).len(),
147 full_shape
148 );
149
150 let shape = full_shape;
151
152 let tensor = Tensor::from_shape(&shape, batch.input_slot(idx))?;
153
154 inputs.push(tensor.into());
155 }
156
157 Ok(inputs)
158 }
159
160 fn execute(&self, pad: &mut ScratchPadView<'_>, model_api: &ModelApi) -> Result<()> {
161 let inputs = self.build_inputs(pad, model_api)?;
162 let result = self.plan.run(inputs)?;
163
164 for idx in 0..model_api.outputs.len() {
165 let value = result[idx].as_slice::<f32>()?;
166 pad.output_slot_mut(idx).copy_from_slice(value);
167 }
168
169 Ok(())
170 }
171}