1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
use std::io::Cursor;
use std::num::NonZeroU64;
use base64::prelude::*;
use bytes::{Buf, BufMut, BytesMut};
use celestia_tendermint::crypto::sha256::HASH_SIZE;
use celestia_tendermint::{crypto, merkle};
use celestia_tendermint_proto::serializers::cow_str::CowStr;
use nmt_rs::NamespaceMerkleHasher;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use crate::consts::appconsts;
use crate::nmt::{Namespace, NamespacedHashExt, NamespacedSha2Hasher, Nmt, RawNamespacedHash};
use crate::{Error, Result};
use crate::{InfoByte, Share};
/// A merkle hash used to identify the [`Blob`]s data.
///
/// In Celestia network, the transaction which pays for the blob's inclusion
/// is separated from the data itself. The reason for that is to allow verifying
/// the blockchain's state without the need to pull the actual data which got stored.
/// To achieve that, the [`MsgPayForBlobs`] transaction only includes the [`Commitment`]s
/// of the blobs it is paying for, not the data itself.
///
/// The algorithm of computing the [`Commitment`] of the [`Blob`]'s [`Share`]s is
/// designed in a way to allow easy and cheap proving of the [`Share`]s inclusion in the
/// block. It is computed as a [`merkle hash`] of all the [`Nmt`] subtree roots created from
/// the blob shares included in the [`ExtendedDataSquare`] rows. Assuming the `s1` and `s2`
/// are the only shares of some blob posted to the celestia, they'll result in a single subtree
/// root as shown below:
///
/// ```text
/// NMT: row root
/// / \
/// o subtree root
/// / \ / \
/// _________________
/// EDS row: | s | s | s1 | s2 |
/// ```
///
/// Using subtree roots as a base for [`Commitment`] computation allows for much smaller
/// inclusion proofs than when the [`Share`]s would be used directly, but it imposes some
/// constraints on how the [`Blob`]s can be placed in the [`ExtendedDataSquare`]. You can
/// read more about that in the [`share commitment rules`].
///
/// [`Blob`]: crate::Blob
/// [`Share`]: crate::share::Share
/// [`MsgPayForBlobs`]: celestia_proto::celestia::blob::v1::MsgPayForBlobs
/// [`merkle hash`]: celestia_tendermint::merkle::simple_hash_from_byte_vectors
/// [`Nmt`]: crate::nmt::Nmt
/// [`ExtendedDataSquare`]: crate::ExtendedDataSquare
/// [`share commitment rules`]: https://github.com/celestiaorg/celestia-app/blob/main/specs/src/specs/data_square_layout.md#blob-share-commitment-rules
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Commitment(pub merkle::Hash);
impl Commitment {
/// Generate the share commitment from the given blob data.
pub fn from_blob(
namespace: Namespace,
share_version: u8,
blob_data: &[u8],
) -> Result<Commitment> {
let shares = split_blob_to_shares(namespace, share_version, blob_data)?;
Self::from_shares(namespace, &shares)
}
/// Generate the commitment from the given shares.
pub fn from_shares(namespace: Namespace, mut shares: &[Share]) -> Result<Commitment> {
// the commitment is the root of a merkle mountain range with max tree size
// determined by the number of roots required to create a share commitment
// over that blob. The size of the tree is only increased if the number of
// subtree roots surpasses a constant threshold.
let subtree_width = subtree_width(shares.len() as u64, appconsts::SUBTREE_ROOT_THRESHOLD);
let tree_sizes = merkle_mountain_range_sizes(shares.len() as u64, subtree_width);
let mut leaf_sets: Vec<&[_]> = Vec::with_capacity(tree_sizes.len());
for size in tree_sizes {
let (leafs, rest) = shares.split_at(size as usize);
leaf_sets.push(leafs);
shares = rest;
}
// create the commitments by pushing each leaf set onto an nmt
let mut subtree_roots: Vec<RawNamespacedHash> = Vec::with_capacity(leaf_sets.len());
for leaf_set in leaf_sets {
// create the nmt
let mut tree = Nmt::with_hasher(NamespacedSha2Hasher::with_ignore_max_ns(true));
for leaf_share in leaf_set {
tree.push_leaf(leaf_share.as_ref(), namespace.into())
.map_err(Error::Nmt)?;
}
// add the root
subtree_roots.push(tree.root().to_array());
}
let hash = merkle::simple_hash_from_byte_vectors::<crypto::default::Sha256>(&subtree_roots);
Ok(Commitment(hash))
}
}
impl Serialize for Commitment {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let s = BASE64_STANDARD.encode(self.0);
serializer.serialize_str(&s)
}
}
impl<'de> Deserialize<'de> for Commitment {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
// base64 needs more buffer size than the final output
let mut buf = [0u8; HASH_SIZE * 2];
let s = CowStr::deserialize(deserializer)?;
let len = BASE64_STANDARD
.decode_slice(s, &mut buf)
.map_err(|e| serde::de::Error::custom(e.to_string()))?;
let hash: merkle::Hash = buf[..len]
.try_into()
.map_err(|_| serde::de::Error::custom("commitment is not a size of a sha256"))?;
Ok(Commitment(hash))
}
}
/// Splits blob's data to the sequence of shares
pub(crate) fn split_blob_to_shares(
namespace: Namespace,
share_version: u8,
blob_data: &[u8],
) -> Result<Vec<Share>> {
if share_version != appconsts::SHARE_VERSION_ZERO {
return Err(Error::UnsupportedShareVersion(share_version));
}
let mut shares = Vec::new();
let mut cursor = Cursor::new(blob_data);
while cursor.has_remaining() {
let share = build_sparse_share_v0(namespace, &mut cursor)?;
shares.push(share);
}
Ok(shares)
}
/// Build a sparse share from a cursor over data
fn build_sparse_share_v0(
namespace: Namespace,
data: &mut Cursor<impl AsRef<[u8]>>,
) -> Result<Share> {
let is_first_share = data.position() == 0;
let data_len = cursor_inner_length(data);
let mut bytes = BytesMut::with_capacity(appconsts::SHARE_SIZE);
// Write the namespace
bytes.put_slice(namespace.as_bytes());
// Write the info byte
let info_byte = InfoByte::new(appconsts::SHARE_VERSION_ZERO, is_first_share)?;
bytes.put_u8(info_byte.as_u8());
// If this share is first in the sequence, write the bytes len of the sequence
if is_first_share {
let data_len = data_len
.try_into()
.map_err(|_| Error::ShareSequenceLenExceeded(data_len))?;
bytes.put_u32(data_len);
}
// Calculate amount of bytes to read
let current_size = bytes.len();
let available_space = appconsts::SHARE_SIZE - current_size;
let read_amount = available_space.min(data.remaining());
// Resize to share size with 0 padding
bytes.resize(appconsts::SHARE_SIZE, 0);
// Read the share data
data.copy_to_slice(&mut bytes[current_size..current_size + read_amount]);
Share::from_raw(&bytes)
}
fn cursor_inner_length(cursor: &Cursor<impl AsRef<[u8]>>) -> usize {
cursor.get_ref().as_ref().len()
}
/// merkle_mountain_range_sizes returns the sizes (number of leaf nodes) of the
/// trees in a merkle mountain range constructed for a given total_size and
/// max_tree_size.
///
/// https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
/// https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
fn merkle_mountain_range_sizes(mut total_size: u64, max_tree_size: u64) -> Vec<u64> {
let mut tree_sizes = Vec::new();
while total_size != 0 {
if total_size >= max_tree_size {
tree_sizes.push(max_tree_size);
total_size -= max_tree_size;
} else {
let tree_size = round_down_to_power_of_2(
// unwrap is safe as total_size can't be zero there
total_size.try_into().unwrap(),
)
.expect("Failed to find next power of 2");
tree_sizes.push(tree_size);
total_size -= tree_size;
}
}
tree_sizes
}
/// blob_min_square_size returns the minimum square size that can contain share_count
/// number of shares.
fn blob_min_square_size(share_count: u64) -> u64 {
round_up_to_power_of_2((share_count as f64).sqrt().ceil() as u64)
.expect("Failed to find minimum blob square size")
}
/// subtree_width determines the maximum number of leaves per subtree in the share
/// commitment over a given blob. The input should be the total number of shares
/// used by that blob. The reasoning behind this algorithm is discussed in depth
/// in ADR013
/// (celestia-app/docs/architecture/adr-013-non-interative-default-rules-for-zero-padding).
fn subtree_width(share_count: u64, subtree_root_threshold: u64) -> u64 {
// per ADR013, we use a predetermined threshold to determine width of sub
// trees used to create share commitments
let mut s = share_count / subtree_root_threshold;
// round up if the width is not an exact multiple of the threshold
if share_count % subtree_root_threshold != 0 {
s += 1;
}
// use a power of two equal to or larger than the multiple of the subtree
// root threshold
s = round_up_to_power_of_2(s).expect("Failed to find next power of 2");
// use the minimum of the subtree width and the min square size, this
// gurarantees that a valid value is returned
// return min(s, BlobMinSquareSize(shareCount))
s.min(blob_min_square_size(share_count))
}
/// round_up_to_power_of_2 returns the next power of two that is strictly greater than input.
fn round_up_to_power_of_2(x: u64) -> Option<u64> {
let mut po2 = 1;
loop {
if po2 >= x {
return Some(po2);
}
if let Some(next_po2) = po2.checked_shl(1) {
po2 = next_po2;
} else {
return None;
}
}
}
/// round_down_to_power_of_2 returns the next power of two less than or equal to input.
fn round_down_to_power_of_2(x: NonZeroU64) -> Option<u64> {
let x: u64 = x.into();
match round_up_to_power_of_2(x) {
Some(po2) if po2 == x => Some(x),
Some(po2) => Some(po2 / 2),
_ => None,
}
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
fn test_single_sparse_share() {
let namespace = Namespace::new(0, &[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).unwrap();
let data = vec![1, 2, 3, 4, 5, 6, 7];
let mut cursor = Cursor::new(&data);
let share = build_sparse_share_v0(namespace, &mut cursor).unwrap();
// check cursor
assert!(!cursor.has_remaining());
// check namespace
let (share_ns, share_data) = share.as_ref().split_at(appconsts::NAMESPACE_SIZE);
assert_eq!(share_ns, namespace.as_bytes());
// check data
let expected_share_start: &[u8] = &[
1, // info byte
0, 0, 0, 7, // sequence len
1, 2, 3, 4, 5, 6, 7, // data
];
let (share_data, share_padding) = share_data.split_at(expected_share_start.len());
assert_eq!(share_data, expected_share_start);
// check padding
assert_eq!(
share_padding,
&vec![0; appconsts::FIRST_SPARSE_SHARE_CONTENT_SIZE - data.len()],
);
}
#[test]
fn test_sparse_share_with_continuation() {
let namespace = Namespace::new(0, &[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).unwrap();
let continuation_len = 7;
let data = vec![7; appconsts::FIRST_SPARSE_SHARE_CONTENT_SIZE + continuation_len];
let mut cursor = Cursor::new(&data);
let first_share = build_sparse_share_v0(namespace, &mut cursor).unwrap();
// check cursor
assert_eq!(
cursor.position(),
appconsts::FIRST_SPARSE_SHARE_CONTENT_SIZE as u64
);
// check namespace
let (share_ns, share_data) = first_share.as_ref().split_at(appconsts::NAMESPACE_SIZE);
assert_eq!(share_ns, namespace.as_bytes());
// check info byte
let (share_info_byte, share_data) = share_data.split_at(appconsts::SHARE_INFO_BYTES);
assert_eq!(share_info_byte, &[1]);
// check sequence len
let (share_seq_len, share_data) = share_data.split_at(appconsts::SEQUENCE_LEN_BYTES);
assert_eq!(share_seq_len, &(data.len() as u32).to_be_bytes());
// check data
assert_eq!(
share_data,
&vec![7; appconsts::FIRST_SPARSE_SHARE_CONTENT_SIZE]
);
// Continuation share
let continuation_share = build_sparse_share_v0(namespace, &mut cursor).unwrap();
// check cursor
assert!(!cursor.has_remaining());
// check namespace
let (share_ns, share_data) = continuation_share
.as_ref()
.split_at(appconsts::NAMESPACE_SIZE);
assert_eq!(share_ns, namespace.as_bytes());
// check data
let expected_continuation_share_start: &[u8] = &[
0, // info byte
7, 7, 7, 7, 7, 7, 7, // data
];
let (share_data, share_padding) =
share_data.split_at(expected_continuation_share_start.len());
assert_eq!(share_data, expected_continuation_share_start);
// check padding
assert_eq!(
share_padding,
&vec![0; appconsts::CONTINUATION_SPARSE_SHARE_CONTENT_SIZE - continuation_len],
);
}
#[test]
fn test_sparse_share_empty_data() {
let namespace = Namespace::new(0, &[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]).unwrap();
let data = vec![];
let mut cursor = Cursor::new(&data);
let expected_share_start: &[u8] = &[
1, // info byte
0, 0, 0, 0, // sequence len
];
let share = build_sparse_share_v0(namespace, &mut cursor).unwrap();
// check cursor
assert!(!cursor.has_remaining());
// check namespace
let (share_ns, share_data) = share.as_ref().split_at(appconsts::NAMESPACE_SIZE);
assert_eq!(share_ns, namespace.as_bytes());
// check data
let (share_start, share_data) = share_data.split_at(expected_share_start.len());
assert_eq!(share_start, expected_share_start);
// check padding
assert_eq!(
share_data,
&vec![0; appconsts::FIRST_SPARSE_SHARE_CONTENT_SIZE],
);
}
#[test]
fn merkle_mountain_ranges() {
struct TestCase {
total_size: u64,
square_size: u64,
expected: Vec<u64>,
}
let test_cases = [
TestCase {
total_size: 11,
square_size: 4,
expected: vec![4, 4, 2, 1],
},
TestCase {
total_size: 2,
square_size: 64,
expected: vec![2],
},
TestCase {
total_size: 64,
square_size: 8,
expected: vec![8, 8, 8, 8, 8, 8, 8, 8],
},
// Height
// 3 x x
// / \ / \
// / \ / \
// / \ / \
// / \ / \
// 2 x x x x
// / \ / \ / \ / \
// 1 x x x x x x x x x
// / \ / \ / \ / \ / \ / \ / \ / \ / \
// 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
TestCase {
total_size: 19,
square_size: 8,
expected: vec![8, 8, 2, 1],
},
];
for case in test_cases {
assert_eq!(
merkle_mountain_range_sizes(case.total_size, case.square_size),
case.expected,
);
}
}
}