1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
use std::io::{self, Read};
use std::mem::swap;
use std::num::Wrapping;

/// This class is the internal method of finding chunk boundaries.
///
/// It can look at the actual bytes or not, for example:
/// * Use a rolling algorithm such as ZPAQ or Adler32
/// * Find some predefined boundary in the data
/// * Make blocks of a fixed size (then it's NOT content-defined!)
///
/// This is where the internal state of the algorithm should be kept (counter,
/// hash, etc).
pub trait ChunkerImpl {
    /// Look at the new bytes to maybe find a boundary.
    fn find_boundary(&mut self, data: &[u8]) -> Option<usize>;

    /// Reset the internal state after a chunk has been emitted
    fn reset(&mut self) {}
}

#[cfg(not(test))]
const BUF_SIZE: usize = 4096;
#[cfg(test)]
const BUF_SIZE: usize = 8;

/// Chunker object, wraps the rolling hash into a stream-splitting object.
pub struct Chunker<I: ChunkerImpl> {
    inner: I,
}

impl<I: ChunkerImpl> Chunker<I> {
    /// Create a Chunker from a specific way of finding chunk boundaries.
    pub fn new(inner: I) -> Chunker<I> {
        Chunker { inner: inner }
    }

    pub fn whole_chunks<R: Read>(self, reader: R) -> WholeChunks<R, I> {
        WholeChunks {
            stream: self.stream(reader),
            buffer: Vec::new(),
        }
    }

    pub fn all_chunks<R: Read>(self, reader: R)
        -> io::Result<Vec<Vec<u8>>>
    {
        let mut chunks = Vec::new();
        for chunk in self.whole_chunks(reader) {
            match chunk {
                Ok(chunk) => chunks.push(chunk),
                Err(e) => return Err(e)
            }
        }
        Ok(chunks)
    }

    pub fn stream<R: Read>(self, reader: R) -> ChunkStream<R, I> {
        ChunkStream {
            reader: reader,
            inner: self.inner,
            buffer: [0u8; BUF_SIZE],
            pos: 0,
            len: 0,
            status: EmitStatus::Data,
        }
    }

    pub fn chunks<R: Read>(self, reader: R) -> ChunkInfoStream<R, I> {
        ChunkInfoStream {
            stream: self.stream(reader),
            last_chunk: 0,
            pos: 0,
        }
    }

    pub fn slices(self, buffer: &[u8]) -> Slices<I> {
        Slices {
            inner: self.inner,
            buffer: buffer,
            pos: 0,
        }
    }
}

pub struct WholeChunks<R: Read, I: ChunkerImpl> {
    stream: ChunkStream<R, I>,
    buffer: Vec<u8>,
}

impl<R: Read, I: ChunkerImpl> Iterator for WholeChunks<R, I> {
    type Item = io::Result<Vec<u8>>;

    fn next(&mut self) -> Option<io::Result<Vec<u8>>> {
        while let Some(chunk) = self.stream.read() {
            match chunk {
                Err(e) => return Some(Err(e)),
                Ok(ChunkInput::Data(d)) => self.buffer.extend_from_slice(d),
                Ok(ChunkInput::End) => {
                    let mut res = Vec::new();
                    swap(&mut res, &mut self.buffer);
                    return Some(Ok(res));
                }
            }
        }
        None
    }
}

pub enum ChunkInput<'a> {
    Data(&'a [u8]),
    End,
}

#[derive(PartialEq, Eq)]
enum EmitStatus {
    End, // We didn't emit any Data since the last End
    Data, // We have been emitting data
    AtSplit, // We found the end of a chunk, emitted the Data but not the End
}

pub struct ChunkStream<R: Read, I: ChunkerImpl> {
    reader: R,
    inner: I,
    buffer: [u8; BUF_SIZE],
    len: usize, // How much of the buffer has been read in from the reader
    pos: usize, // Where are we in handling the buffer
    status: EmitStatus,

}

impl<R: Read, I: ChunkerImpl> ChunkStream<R, I> {
    /// Iterate on the chunks, returning `ChunkInput` items.
    ///
    /// An item is either some data that is part of the current chunk, or `End`,
    /// indicating the boundary between chunks.
    ///
    /// `End` is always returned at the end of the last chunk.
    // Can't be Iterator because of 'a
    pub fn read<'a>(&'a mut self) -> Option<io::Result<ChunkInput<'a>>> {
        if self.pos == self.len {
            assert!(self.status != EmitStatus::AtSplit);
            self.pos = 0;
            self.len = match self.reader.read(&mut self.buffer) {
                Ok(l) => l,
                Err(e) => return Some(Err(e)),
            };
            if self.len == 0 {
                if self.status == EmitStatus::Data {
                    self.status = EmitStatus::End;
                    return Some(Ok(ChunkInput::End));
                }
                return None;
            }
        }
        if self.status == EmitStatus::AtSplit {
            self.status = EmitStatus::End;
            self.inner.reset();
            return Some(Ok(ChunkInput::End));
        }
        if let Some(split) = self.inner.find_boundary(
            &self.buffer[self.pos..self.len])
        {
            self.status = EmitStatus::AtSplit;
            let start = self.pos;
            self.pos += split + 1;
            return Some(Ok(ChunkInput::Data(&self.buffer[start..self.pos])));
        }
        let start = self.pos;
        self.pos = self.len;
        self.status = EmitStatus::Data;
        Some(Ok(ChunkInput::Data(&self.buffer[start..self.len])))
    }
}

pub struct ChunkInfo {
    start: usize,
    length: usize,
}

impl ChunkInfo {
    pub fn start(&self) -> usize {
        self.start
    }

    pub fn length(&self) -> usize {
        self.length
    }

    pub fn end(&self) -> usize {
        self.start + self.length
    }
}

pub struct ChunkInfoStream<R: Read, I: ChunkerImpl> {
    stream: ChunkStream<R, I>,
    last_chunk: usize,
    pos: usize,
}

impl<R: Read, I: ChunkerImpl> Iterator for ChunkInfoStream<R, I> {
    type Item = io::Result<ChunkInfo>;

    fn next(&mut self) -> Option<io::Result<ChunkInfo>> {
        while let Some(chunk) = self.stream.read() {
            match chunk {
                Err(e) => return Some(Err(e)),
                Ok(ChunkInput::Data(d)) => self.pos += d.len(),
                Ok(ChunkInput::End) => {
                    let start = self.last_chunk;
                    self.last_chunk = self.pos;
                    return Some(Ok(ChunkInfo { start: start,
                                               length: self.pos - start }));
                }
            }
        }
        None
    }
}

pub struct Slices<'a, I: ChunkerImpl> {
    inner: I,
    buffer: &'a [u8],
    pos: usize,
}

impl<'a, I: ChunkerImpl> Iterator for Slices<'a, I> {
    type Item = &'a [u8];

    fn next(&mut self) -> Option<&'a [u8]> {
        if self.pos == self.buffer.len() {
            None
        } else {
            if let Some(split) = self.inner.find_boundary(
                &self.buffer[self.pos..])
            {
                let start = self.pos;
                self.pos += split + 1;
                self.inner.reset();
                Some(&self.buffer[start..self.pos])
            } else {
                let start = self.pos;
                self.pos = self.buffer.len();
                Some(&self.buffer[start..])
            }
        }
    }
}

const HM: Wrapping<u32> = Wrapping(123456791);

pub struct ZPAQ {
    nbits: usize,
    c1: u8, // previous byte
    o1: [u8; 256],
    h: Wrapping<u32>,
}

impl ZPAQ {
    pub fn new(nbits: usize) -> ZPAQ {
        ZPAQ {
            nbits: 32 - nbits,
            c1: 0,
            o1: [0; 256],
            h: HM,
        }
    }

    pub fn update(&mut self, byte: u8) -> bool {
        if byte == self.o1[self.c1 as usize] {
            self.h = self.h * HM + Wrapping(byte as u32 + 1);
        } else {
            self.h = self.h * HM * Wrapping(2) + Wrapping(byte as u32 + 1);
        }
        self.o1[self.c1 as usize] = byte;
        self.c1 = byte;

        self.h.0 < (1 << self.nbits)
    }
}

impl ChunkerImpl for ZPAQ {
    fn find_boundary(&mut self, data: &[u8]) -> Option<usize> {
        println!("find_boundary({:?})", std::str::from_utf8(data).unwrap());
        let mut pos = 0;
        while pos < data.len() {
            if self.update(data[pos]) {
                println!("  = {}", pos);
                return Some(pos);
            }

            pos += 1;
        }
        None
    }

    fn reset(&mut self) {
        self.c1 = 0u8;
        self.o1.clone_from_slice(&[0u8; 256]);
        self.h = HM;
    }
}

#[cfg(test)]
mod tests {
    use ::{Chunker, ChunkInput, ZPAQ};
    use std::io::Cursor;
    use std::str::from_utf8;

    fn base() -> (Chunker<ZPAQ>, &'static [u8],
                  Cursor<&'static [u8]>, &'static [u8]) {
        let rollinghash = ZPAQ::new(3); // 8-bit chunk average
        let chunker = Chunker::new(rollinghash);
        let data = b"abcdefghijklmnopqrstuvwxyz1234567890";
        let expected = b"abcdefghijk|lmno|pq|rstuvw|xyz123|4567890|";
        (chunker, data, Cursor::new(data), expected)
    }

    #[test]
    fn test_whole_chunks() {
        let (chunker, _, reader, expected) = base();
        let mut result = Vec::new();

        // Read whole chunks accumulated in vectors
        for chunk /* io::Result<Vec<u8>> */ in chunker.whole_chunks(reader) {
            let chunk = chunk.unwrap();
            result.extend(chunk);
            result.push(b'|');
        }
        assert_eq!(from_utf8(&result).unwrap(),
                   from_utf8(&expected).unwrap());
    }

    #[test]
    fn test_all_chunks() {
        let (chunker, _, reader, expected) = base();
        let mut result = Vec::new();

        // Read all the chunks at once
        // Like using whole_chunks(...).collect() but also handles errors
        let chunks: Vec<Vec<u8>> = chunker.all_chunks(reader).unwrap();
        for chunk /* Vec<u8> */ in chunks {
            result.extend(chunk);
            result.push(b'|');
        }
        assert_eq!(from_utf8(&result).unwrap(),
                   from_utf8(&expected).unwrap());
    }

    #[test]
    fn test_stream() {
        let (chunker, _, reader, expected) = base();
        let mut result = Vec::new();

        // Zero-allocation by using a fixed-size internal buffer
        let mut chunk_iter = chunker.stream(reader);
        while let Some(chunk) = chunk_iter.read() {
            let chunk = chunk.unwrap();
            match chunk {
                ChunkInput::Data(d) => {
                    result.extend(d);
                }
                ChunkInput::End => result.push(b'|'),
            }
        }
        assert_eq!(from_utf8(&result).unwrap(),
                   from_utf8(&expected).unwrap());
    }

    #[test]
    fn test_slices() {
        let (chunker, data, _, expected) = base();
        let mut result = Vec::new();

        // Get slices from an in-memory buffer holding the whole input
        for slice /* &[u8] */ in chunker.slices(data) {
            result.extend(slice);
            result.push(b'|');
        }
        assert_eq!(from_utf8(&result).unwrap(),
                   from_utf8(&expected).unwrap());
    }

    #[test]
    fn test_chunks() {
        let (chunker, data, reader, expected) = base();
        let mut result = Vec::new();

        // Get chunk positions
        for chunk_info in chunker.chunks(reader) {
            let chunk_info = chunk_info.unwrap();
            result.extend(&data[chunk_info.start()..chunk_info.end()]);
            result.push(b'|');
        }
        assert_eq!(from_utf8(&result).unwrap(),
                   from_utf8(&expected).unwrap());
    }
}