1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//! This is a platform agnostic Rust driver for the CCS881 indoor air quality
//! sensor, based on the [`embedded-hal blocking i2c`] traits.
//!
//! [`embedded-hal blocking i2c`]: https://github.com/rust-embedded/embedded-hal
//!
//! This driver allows you to:
//! - Start App mode.
//! - Read all info available [eCO2, eTVOC, Status, ErrorId, RawData].
//! - Reset device.
//!
//! ## The device
//!
//! The CCS811 The CCS811 is an ultra-low power digital gas sensor solution
//! which integrates a metal oxide (MOX) gas sensor to detect a
//! wide range of Volatile Organic Compounds (VOCs) for indoor
//! air quality monitoring with a microcontroller unit (MCU), which
//! includes an Analog-to-Digital converter (ADC), and an I²C
//! interface.
//!
//! Datasheet:
//! - [ccs811](https://ams.com/documents/20143/36005/CCS811_DS000459_7-00.pdf/3cfdaea5-b602-fe28-1a14-18776b61a35a)
//!
//!
//! ## Usage examples (see also examples folder)
//!
//! To use this driver, import this crate and an `embedded-hal` implementation,
//! then instantiate the device.

#![deny(missing_docs, unsafe_code, warnings)]
#![no_std]

extern crate embedded_hal as hal;

use hal::blocking::i2c::{Read, Write, WriteRead};

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I²C bus error
    I2C(E),
    /// Invalid input data
    InvalidInputData,
}

/// Measurement Mode
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum DriveMode {
    /// Idle Mode
    DriveMode0Idle = 0b0u8,
    /// Mode 1 : 1 read per second    
    DriveMode1Sec = 0b1_0000u8,
    /// Mode 2 : read each 10 seconds
    DriveMode10Sec = 0b10_0000u8,
    /// Mode 3 : read each 60 seconds
    DriveMode60Sec = 0b11_0000u8,
    /// Mode 4 : read every 250 ms, expose only raw data
    DriveModeRawData = 0b100_0000u8,
}

/// Interrupt Mode
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum InterruptDataReady {
    /// Assert nINT when data is available in ALG_RESULT_DATA
    Enabled = 0b1000u8,
    /// Interrupt generation is disabled
    Disabled = 0b0u8,
}

/// Interrupt Mode
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum InterruptThreshold {
    /// Assert nINT if ALG_RESULT_DATA crosses thresholds
    Enabled = 0b100u8,
    /// Interrupt mode, if asserted, operates normally
    Disabled = 0x0,
}

/// ErrorId Codes
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum ErrorIdCodes {
    /// WRITE_REG_INVALID
    ///
    /// "The CCS811 received an I2C write request addressed to this station but with
    /// invalid register address ID"
    WriteRegInvalid = 0b0u8,
    /// READ_REG_INVALID
    ///
    /// "The CCS811 received an I2C read request to a mailbox ID that is invalid"
    ReadRegInvalid = 0b10u8,
    /// MEASMODE_INVALID
    ///
    /// "The CCS811 received an I2C request to write an unsupported mode to
    /// MEAS_MODE"
    MeasModeInvalid = 0b100u8,
    /// MAX_RESISTANCE
    ///
    /// "The sensor resistance measurement has reached or exceeded the maximum
    /// range"
    MaxResistance = 0b1000u8,
    /// HEATER_FAULT
    ///
    /// "The Heater current in the CCS811 is not in range"
    HeaterFault = 0b1_0000u8,
    /// HEATER_SUPPLY
    ///
    /// "The Heater voltage is not being applied correctly"
    HeaterSupply = 0b10_0000u8,
}

/// Boot mode Register addresses
/// Taken from the CCS811 data sheet (Figure 25, p.26)
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum BootRegister {
    /// Status (RO)
    ///
    /// "Status register"
    Status = 0x00,
    /// HW_ID (RO)
    ///
    /// "Hardware ID. The value is 0x81"
    HwId = 0x20,
    /// HW Version (RO)
    ///
    /// "Hardware Version. The value is 0x1X"
    HwVersion = 0x21,
    /// FW_Boot_Version (RO)
    ///
    /// "Firmware Boot Version. The first 2 bytes contain the firmware version number for the boot code."
    FwBootVersion = 0x23,
    /// FW_App_Version (RO)
    ///
    /// "Firmware Application Version. The first 2 bytes contain the firmware version number for the application code"
    FwAppVersion = 0x24,
    /// Error Id
    ///
    /// "Error ID. When the status register reports an error its source is located in this register"
    ErrorId = 0xE0,
    /// APP_START (WO)
    ///
    /// "Status register"
    AppStart = 0xF4,
    /// SW_RESET
    ///
    /// "If the correct 4 bytes (0x11 0xE5 0x72 0x8A) are written to this register in a single
    /// sequence the device will reset and return to BOOT mode."
    SwReset = 0xFF,
}

/// Application mode Register addresses
/// Taken from the CCS811 data sheet (Figure 14, p.17)
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[repr(u8)]
pub enum AppRegister {
    /// Status (RO)
    ///
    /// "Status register"
    Status = 0x00,
    /// Measurement Mode (RW)
    ///
    /// "Measurement mode and conditions register"
    MeasMode = 0x01,
    /// ALG_RESULT_DATA (RO)
    ///
    /// "Algorithm result. The most significant 2 bytes contain a
    /// ppm estimate of the equivalent CO 2 (eCO 2 ) level, and
    /// the next two bytes contain a ppb estimate of the total
    /// VOC level."
    AlgResultData = 0x02,
    /// RAW_DATA (RO)
    ///
    /// "Raw ADC data values for resistance and current source used."
    RawData = 0x03,
    /// ENV_DATA (WO)
    ///
    /// "Temperature and humidity data can be written to enable compensation"
    EnvData = 0x05,
    ///THRESHOLDS (WO)
    ///
    /// "Thresholds for operation when interrupts are only generated when eCO 2 ppm crosses a threshold"
    Thresholds = 0x10,
    /// BASELINE (R/W)
    ///
    /// "The encoded current baseline value can be read. A previously saved encoded baseline can be written."
    Baseline = 0x11,
    /// HW_ID (RO)
    ///
    /// "Hardware ID. The value is 0x81"
    HwId = 0x20,
    /// HW Version (RO)
    ///
    /// "Hardware Version. The value is 0x1X"
    HwVersion = 0x21,
    /// FW_Boot_Version (RO)
    ///
    /// "Firmware Boot Version. The first 2 bytes contain the firmware version number for the boot code."
    FwBootVersion = 0x23,
    /// FW_App_Version (RO)
    ///
    /// "Firmware Application Version. The first 2 bytes contain the firmware version number for the application code"
    FwAppVersion = 0x24,
    /// Internal_State (RO)
    ///
    /// "Internal Status register"
    InternalStatus = 0xA0,
    /// Error Id
    ///
    /// "Error ID. When the status register reports an error its source is located in this register"
    ErrorId = 0xE0,
    /// SW_RESET
    ///
    /// "If the correct 4 bytes (0x11 0xE5 0x72 0x8A) are written to this register in a single
    /// sequence the device will reset and return to BOOT mode."
    SwReset = 0xFF,
}

/// Result
#[derive(Debug, Default)]
pub struct SensorData {
    /// eCO
    pub e_co: u16,
    /// eTVoc
    pub e_tvoc: u16,
    /// Status
    pub status: u8,
    /// Error Id
    pub error_id: u8,
    /// Raw data
    pub raw: [u8; 2],
}

/// Ccs811 device driver.
#[derive(Debug, Default)]
pub struct Ccs811<I2C> {
    /// The concrete I²C device implementation.
    i2c: I2C,
    /// i2c address
    address: u8,
}

impl<I2C, E> Ccs811<I2C>
where
    I2C: Write<Error = E> + WriteRead<Error = E> + Read<Error = E>,
{
    /// Create new instance of the Ccs811 device.
    pub fn new(i2c: I2C, address: u8) -> Self {
        Ccs811 { i2c, address }
    }

    /// Destroy driver instance, return I²C bus instance.
    pub fn destroy(self) -> I2C {
        self.i2c
    }

    /// Enter App mode
    pub fn app_start(&mut self) -> Result<(), E> {
        self.i2c
            .write(self.address, &[BootRegister::AppStart as u8])
    }

    /// Set MEAS_MODE Register
    pub fn set_meas_mode(
        &mut self,
        drive_mode: DriveMode,
        interrupt: InterruptDataReady,
        threshold: InterruptThreshold,
    ) -> Result<(), E> {
        let mode: u8 = drive_mode as u8 | interrupt as u8 | threshold as u8;
        self.i2c
            .write(self.address, &[AppRegister::MeasMode as u8, mode])
    }

    /// Get MEAS_MODE Register
    pub fn get_meas_mode(&mut self, data: &mut [u8; 1]) -> Result<(), E> {
        self.i2c
            .write_read(self.address, &[AppRegister::MeasMode as u8], data)
    }

    /// Perform a SwReset, which brings firmware in Boot Mode.
    pub fn reset(&mut self) -> Result<(), E> {
        self.i2c.write(
            self.address,
            &[AppRegister::SwReset as u8, 0x11, 0xe5, 0x72, 0x8a],
        )
    }

    /// Returns [HwId;HwVersion]
    pub fn hw_info(&mut self) -> Result<[u8; 2], E> {
        let mut hw = [0u8; 2];
        self.i2c
            .write_read(self.address, &[AppRegister::HwId as u8], &mut hw[..1])?;
        self.i2c
            .write_read(self.address, &[AppRegister::HwVersion as u8], &mut hw[1..])?;
        Ok(hw)
    }

    /// Returns [FwBootVersion;FwAppVersion]
    pub fn fw_info(&mut self) -> Result<[u8; 4], E> {
        let mut fw = [0u8; 4];
        self.i2c.write_read(
            self.address,
            &[AppRegister::FwBootVersion as u8],
            &mut fw[0..2],
        )?;
        self.i2c.write_read(
            self.address,
            &[AppRegister::FwAppVersion as u8],
            &mut fw[2..],
        )?;
        Ok(fw)
    }

    /// Returns RAW_DATA
    pub fn raw_data(&mut self) -> Result<[u8; 2], E> {
        let mut data = [0u8; 2];
        self.i2c
            .write_read(self.address, &[AppRegister::RawData as u8], &mut data)?;
        Ok(data)
    }

    /// Set a previosuly retrieved baseline
    ///
    /// "A previously stored value may be written back to this two byte
    /// register and the Algorithms will use the new value in its
    /// calculations (until it adjusts it as part of its internal Automatic
    /// Baseline Correction). For more information, refer to ams
    /// application note AN000370: CCS811 Clean Air Baseline Save and
    /// Restore."
    pub fn set_baseline(&mut self, baseline: [u8; 2]) -> Result<(), E> {
        let data: [u8; 3] = [AppRegister::Baseline as u8, baseline[0], baseline[1]];
        self.i2c.write(self.address, &data)
    }

    /// Retrieves Baseline
    pub fn get_baseline(&mut self, baseline: &mut [u8; 2]) -> Result<(), E> {
        self.i2c
            .write_read(self.address, &[AppRegister::Baseline as u8], baseline)
    }

    /// Retrieves Status register
    pub fn get_status(&mut self, status: &mut [u8; 1]) -> Result<(), E> {
        self.i2c
            .write_read(self.address, &[AppRegister::Status as u8], status)
    }

    /// Retrieves Error_Id register
    pub fn get_error_id(&mut self) -> Result<u8, E> {
        let mut data = [0u8; 1];
        self.i2c
            .write_read(self.address, &[AppRegister::ErrorId as u8], &mut data)?;
        Ok(data[0])
    }

    /// Get result
    pub fn get_results(&mut self) -> Result<SensorData, E> {
        let mut data: [u8; 8] = [0u8; 8];
        self.i2c
            .write_read(self.address, &[AppRegister::AlgResultData as u8], &mut data)?;

        let mut ret: SensorData = SensorData::default();
        ret.e_co = (u16::from(data[0]) << 8) + u16::from(data[1]);
        ret.e_tvoc = (u16::from(data[2]) << 8) + u16::from(data[3]);
        ret.status = data[4];
        ret.error_id = data[5];
        ret.raw[0] = data[6];
        ret.raw[1] = data[7];

        Ok(ret)
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn it_works() {
        assert_eq!(2 + 2, 4);
    }
}