cc13x2_cc26x2_pac/i2s0/
aiffmtcfg.rs

1#[doc = r" Value read from the register"]
2pub struct R {
3    bits: u32,
4}
5#[doc = r" Value to write to the register"]
6pub struct W {
7    bits: u32,
8}
9impl super::AIFFMTCFG {
10    #[doc = r" Modifies the contents of the register"]
11    #[inline]
12    pub fn modify<F>(&self, f: F)
13    where
14        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
15    {
16        let bits = self.register.get();
17        let r = R { bits: bits };
18        let mut w = W { bits: bits };
19        f(&r, &mut w);
20        self.register.set(w.bits);
21    }
22    #[doc = r" Reads the contents of the register"]
23    #[inline]
24    pub fn read(&self) -> R {
25        R {
26            bits: self.register.get(),
27        }
28    }
29    #[doc = r" Writes to the register"]
30    #[inline]
31    pub fn write<F>(&self, f: F)
32    where
33        F: FnOnce(&mut W) -> &mut W,
34    {
35        let mut w = W::reset_value();
36        f(&mut w);
37        self.register.set(w.bits);
38    }
39    #[doc = r" Writes the reset value to the register"]
40    #[inline]
41    pub fn reset(&self) {
42        self.write(|w| w)
43    }
44}
45#[doc = r" Value of the field"]
46pub struct RESERVED16R {
47    bits: u16,
48}
49impl RESERVED16R {
50    #[doc = r" Value of the field as raw bits"]
51    #[inline]
52    pub fn bits(&self) -> u16 {
53        self.bits
54    }
55}
56#[doc = r" Value of the field"]
57pub struct DATA_DELAYR {
58    bits: u8,
59}
60impl DATA_DELAYR {
61    #[doc = r" Value of the field as raw bits"]
62    #[inline]
63    pub fn bits(&self) -> u8 {
64        self.bits
65    }
66}
67#[doc = "Possible values of the field `MEM_LEN_24`"]
68#[derive(Clone, Copy, Debug, PartialEq)]
69pub enum MEM_LEN_24R {
70    #[doc = "24-bit (one 8 bit and one 16 bit locked access per sample)"]
71    _24BIT,
72    #[doc = "16-bit (one 16 bit access per sample)"]
73    _16BIT,
74}
75impl MEM_LEN_24R {
76    #[doc = r" Returns `true` if the bit is clear (0)"]
77    #[inline]
78    pub fn bit_is_clear(&self) -> bool {
79        !self.bit()
80    }
81    #[doc = r" Returns `true` if the bit is set (1)"]
82    #[inline]
83    pub fn bit_is_set(&self) -> bool {
84        self.bit()
85    }
86    #[doc = r" Value of the field as raw bits"]
87    #[inline]
88    pub fn bit(&self) -> bool {
89        match *self {
90            MEM_LEN_24R::_24BIT => true,
91            MEM_LEN_24R::_16BIT => false,
92        }
93    }
94    #[allow(missing_docs)]
95    #[doc(hidden)]
96    #[inline]
97    pub fn _from(value: bool) -> MEM_LEN_24R {
98        match value {
99            true => MEM_LEN_24R::_24BIT,
100            false => MEM_LEN_24R::_16BIT,
101        }
102    }
103    #[doc = "Checks if the value of the field is `_24BIT`"]
104    #[inline]
105    pub fn is_24bit(&self) -> bool {
106        *self == MEM_LEN_24R::_24BIT
107    }
108    #[doc = "Checks if the value of the field is `_16BIT`"]
109    #[inline]
110    pub fn is_16bit(&self) -> bool {
111        *self == MEM_LEN_24R::_16BIT
112    }
113}
114#[doc = "Possible values of the field `SMPL_EDGE`"]
115#[derive(Clone, Copy, Debug, PartialEq)]
116pub enum SMPL_EDGER {
117    #[doc = "Data is sampled on the positive edge and clocked out on the negative edge."]
118    POS,
119    #[doc = "Data is sampled on the negative edge and clocked out on the positive edge."]
120    NEG,
121}
122impl SMPL_EDGER {
123    #[doc = r" Returns `true` if the bit is clear (0)"]
124    #[inline]
125    pub fn bit_is_clear(&self) -> bool {
126        !self.bit()
127    }
128    #[doc = r" Returns `true` if the bit is set (1)"]
129    #[inline]
130    pub fn bit_is_set(&self) -> bool {
131        self.bit()
132    }
133    #[doc = r" Value of the field as raw bits"]
134    #[inline]
135    pub fn bit(&self) -> bool {
136        match *self {
137            SMPL_EDGER::POS => true,
138            SMPL_EDGER::NEG => false,
139        }
140    }
141    #[allow(missing_docs)]
142    #[doc(hidden)]
143    #[inline]
144    pub fn _from(value: bool) -> SMPL_EDGER {
145        match value {
146            true => SMPL_EDGER::POS,
147            false => SMPL_EDGER::NEG,
148        }
149    }
150    #[doc = "Checks if the value of the field is `POS`"]
151    #[inline]
152    pub fn is_pos(&self) -> bool {
153        *self == SMPL_EDGER::POS
154    }
155    #[doc = "Checks if the value of the field is `NEG`"]
156    #[inline]
157    pub fn is_neg(&self) -> bool {
158        *self == SMPL_EDGER::NEG
159    }
160}
161#[doc = r" Value of the field"]
162pub struct DUAL_PHASER {
163    bits: bool,
164}
165impl DUAL_PHASER {
166    #[doc = r" Value of the field as raw bits"]
167    #[inline]
168    pub fn bit(&self) -> bool {
169        self.bits
170    }
171    #[doc = r" Returns `true` if the bit is clear (0)"]
172    #[inline]
173    pub fn bit_is_clear(&self) -> bool {
174        !self.bit()
175    }
176    #[doc = r" Returns `true` if the bit is set (1)"]
177    #[inline]
178    pub fn bit_is_set(&self) -> bool {
179        self.bit()
180    }
181}
182#[doc = r" Value of the field"]
183pub struct WORD_LENR {
184    bits: u8,
185}
186impl WORD_LENR {
187    #[doc = r" Value of the field as raw bits"]
188    #[inline]
189    pub fn bits(&self) -> u8 {
190        self.bits
191    }
192}
193#[doc = r" Proxy"]
194pub struct _RESERVED16W<'a> {
195    w: &'a mut W,
196}
197impl<'a> _RESERVED16W<'a> {
198    #[doc = r" Writes raw bits to the field"]
199    #[inline]
200    pub unsafe fn bits(self, value: u16) -> &'a mut W {
201        const MASK: u16 = 65535;
202        const OFFSET: u8 = 16;
203        self.w.bits &= !((MASK as u32) << OFFSET);
204        self.w.bits |= ((value & MASK) as u32) << OFFSET;
205        self.w
206    }
207}
208#[doc = r" Proxy"]
209pub struct _DATA_DELAYW<'a> {
210    w: &'a mut W,
211}
212impl<'a> _DATA_DELAYW<'a> {
213    #[doc = r" Writes raw bits to the field"]
214    #[inline]
215    pub unsafe fn bits(self, value: u8) -> &'a mut W {
216        const MASK: u8 = 255;
217        const OFFSET: u8 = 8;
218        self.w.bits &= !((MASK as u32) << OFFSET);
219        self.w.bits |= ((value & MASK) as u32) << OFFSET;
220        self.w
221    }
222}
223#[doc = "Values that can be written to the field `MEM_LEN_24`"]
224pub enum MEM_LEN_24W {
225    #[doc = "24-bit (one 8 bit and one 16 bit locked access per sample)"]
226    _24BIT,
227    #[doc = "16-bit (one 16 bit access per sample)"]
228    _16BIT,
229}
230impl MEM_LEN_24W {
231    #[allow(missing_docs)]
232    #[doc(hidden)]
233    #[inline]
234    pub fn _bits(&self) -> bool {
235        match *self {
236            MEM_LEN_24W::_24BIT => true,
237            MEM_LEN_24W::_16BIT => false,
238        }
239    }
240}
241#[doc = r" Proxy"]
242pub struct _MEM_LEN_24W<'a> {
243    w: &'a mut W,
244}
245impl<'a> _MEM_LEN_24W<'a> {
246    #[doc = r" Writes `variant` to the field"]
247    #[inline]
248    pub fn variant(self, variant: MEM_LEN_24W) -> &'a mut W {
249        {
250            self.bit(variant._bits())
251        }
252    }
253    #[doc = "24-bit (one 8 bit and one 16 bit locked access per sample)"]
254    #[inline]
255    pub fn _24bit(self) -> &'a mut W {
256        self.variant(MEM_LEN_24W::_24BIT)
257    }
258    #[doc = "16-bit (one 16 bit access per sample)"]
259    #[inline]
260    pub fn _16bit(self) -> &'a mut W {
261        self.variant(MEM_LEN_24W::_16BIT)
262    }
263    #[doc = r" Sets the field bit"]
264    pub fn set_bit(self) -> &'a mut W {
265        self.bit(true)
266    }
267    #[doc = r" Clears the field bit"]
268    pub fn clear_bit(self) -> &'a mut W {
269        self.bit(false)
270    }
271    #[doc = r" Writes raw bits to the field"]
272    #[inline]
273    pub fn bit(self, value: bool) -> &'a mut W {
274        const MASK: bool = true;
275        const OFFSET: u8 = 7;
276        self.w.bits &= !((MASK as u32) << OFFSET);
277        self.w.bits |= ((value & MASK) as u32) << OFFSET;
278        self.w
279    }
280}
281#[doc = "Values that can be written to the field `SMPL_EDGE`"]
282pub enum SMPL_EDGEW {
283    #[doc = "Data is sampled on the positive edge and clocked out on the negative edge."]
284    POS,
285    #[doc = "Data is sampled on the negative edge and clocked out on the positive edge."]
286    NEG,
287}
288impl SMPL_EDGEW {
289    #[allow(missing_docs)]
290    #[doc(hidden)]
291    #[inline]
292    pub fn _bits(&self) -> bool {
293        match *self {
294            SMPL_EDGEW::POS => true,
295            SMPL_EDGEW::NEG => false,
296        }
297    }
298}
299#[doc = r" Proxy"]
300pub struct _SMPL_EDGEW<'a> {
301    w: &'a mut W,
302}
303impl<'a> _SMPL_EDGEW<'a> {
304    #[doc = r" Writes `variant` to the field"]
305    #[inline]
306    pub fn variant(self, variant: SMPL_EDGEW) -> &'a mut W {
307        {
308            self.bit(variant._bits())
309        }
310    }
311    #[doc = "Data is sampled on the positive edge and clocked out on the negative edge."]
312    #[inline]
313    pub fn pos(self) -> &'a mut W {
314        self.variant(SMPL_EDGEW::POS)
315    }
316    #[doc = "Data is sampled on the negative edge and clocked out on the positive edge."]
317    #[inline]
318    pub fn neg(self) -> &'a mut W {
319        self.variant(SMPL_EDGEW::NEG)
320    }
321    #[doc = r" Sets the field bit"]
322    pub fn set_bit(self) -> &'a mut W {
323        self.bit(true)
324    }
325    #[doc = r" Clears the field bit"]
326    pub fn clear_bit(self) -> &'a mut W {
327        self.bit(false)
328    }
329    #[doc = r" Writes raw bits to the field"]
330    #[inline]
331    pub fn bit(self, value: bool) -> &'a mut W {
332        const MASK: bool = true;
333        const OFFSET: u8 = 6;
334        self.w.bits &= !((MASK as u32) << OFFSET);
335        self.w.bits |= ((value & MASK) as u32) << OFFSET;
336        self.w
337    }
338}
339#[doc = r" Proxy"]
340pub struct _DUAL_PHASEW<'a> {
341    w: &'a mut W,
342}
343impl<'a> _DUAL_PHASEW<'a> {
344    #[doc = r" Sets the field bit"]
345    pub fn set_bit(self) -> &'a mut W {
346        self.bit(true)
347    }
348    #[doc = r" Clears the field bit"]
349    pub fn clear_bit(self) -> &'a mut W {
350        self.bit(false)
351    }
352    #[doc = r" Writes raw bits to the field"]
353    #[inline]
354    pub fn bit(self, value: bool) -> &'a mut W {
355        const MASK: bool = true;
356        const OFFSET: u8 = 5;
357        self.w.bits &= !((MASK as u32) << OFFSET);
358        self.w.bits |= ((value & MASK) as u32) << OFFSET;
359        self.w
360    }
361}
362#[doc = r" Proxy"]
363pub struct _WORD_LENW<'a> {
364    w: &'a mut W,
365}
366impl<'a> _WORD_LENW<'a> {
367    #[doc = r" Writes raw bits to the field"]
368    #[inline]
369    pub unsafe fn bits(self, value: u8) -> &'a mut W {
370        const MASK: u8 = 31;
371        const OFFSET: u8 = 0;
372        self.w.bits &= !((MASK as u32) << OFFSET);
373        self.w.bits |= ((value & MASK) as u32) << OFFSET;
374        self.w
375    }
376}
377impl R {
378    #[doc = r" Value of the register as raw bits"]
379    #[inline]
380    pub fn bits(&self) -> u32 {
381        self.bits
382    }
383    #[doc = "Bits 16:31 - 31:16\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
384    #[inline]
385    pub fn reserved16(&self) -> RESERVED16R {
386        let bits = {
387            const MASK: u16 = 65535;
388            const OFFSET: u8 = 16;
389            ((self.bits >> OFFSET) & MASK as u32) as u16
390        };
391        RESERVED16R { bits }
392    }
393    #[doc = "Bits 8:15 - 15:8\\] The number of BCLK periods between a WCLK edge and MSB of the first word in a phase: 0x00: LJF and DSP format 0x01: I2S and DSP format 0x02: RJF format ... 0xFF: RJF format Note: When 0, MSB of the next word will be output in the idle period between LSB of the previous word and the start of the next word. Otherwise logical 0 will be output until the data delay has expired."]
394    #[inline]
395    pub fn data_delay(&self) -> DATA_DELAYR {
396        let bits = {
397            const MASK: u8 = 255;
398            const OFFSET: u8 = 8;
399            ((self.bits >> OFFSET) & MASK as u32) as u8
400        };
401        DATA_DELAYR { bits }
402    }
403    #[doc = "Bit 7 - 7:7\\] The size of each word stored to or loaded from memory:"]
404    #[inline]
405    pub fn mem_len_24(&self) -> MEM_LEN_24R {
406        MEM_LEN_24R::_from({
407            const MASK: bool = true;
408            const OFFSET: u8 = 7;
409            ((self.bits >> OFFSET) & MASK as u32) != 0
410        })
411    }
412    #[doc = "Bit 6 - 6:6\\] On the serial audio interface, data (and wclk) is sampled and clocked out on opposite edges of BCLK."]
413    #[inline]
414    pub fn smpl_edge(&self) -> SMPL_EDGER {
415        SMPL_EDGER::_from({
416            const MASK: bool = true;
417            const OFFSET: u8 = 6;
418            ((self.bits >> OFFSET) & MASK as u32) != 0
419        })
420    }
421    #[doc = "Bit 5 - 5:5\\] Selects dual- or single-phase format. 0: Single-phase: DSP format 1: Dual-phase: I2S, LJF and RJF formats"]
422    #[inline]
423    pub fn dual_phase(&self) -> DUAL_PHASER {
424        let bits = {
425            const MASK: bool = true;
426            const OFFSET: u8 = 5;
427            ((self.bits >> OFFSET) & MASK as u32) != 0
428        };
429        DUAL_PHASER { bits }
430    }
431    #[doc = "Bits 0:4 - 4:0\\] Number of bits per word (8-24): In single-phase format, this is the exact number of bits per word. In dual-phase format, this is the maximum number of bits per word. Values below 8 and above 24 give undefined behavior. Data written to memory is always aligned to 16 or 24 bits as defined by MEM_LEN_24. Bit widths that differ from this alignment will either be truncated or zero padded."]
432    #[inline]
433    pub fn word_len(&self) -> WORD_LENR {
434        let bits = {
435            const MASK: u8 = 31;
436            const OFFSET: u8 = 0;
437            ((self.bits >> OFFSET) & MASK as u32) as u8
438        };
439        WORD_LENR { bits }
440    }
441}
442impl W {
443    #[doc = r" Reset value of the register"]
444    #[inline]
445    pub fn reset_value() -> W {
446        W { bits: 368 }
447    }
448    #[doc = r" Writes raw bits to the register"]
449    #[inline]
450    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
451        self.bits = bits;
452        self
453    }
454    #[doc = "Bits 16:31 - 31:16\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
455    #[inline]
456    pub fn reserved16(&mut self) -> _RESERVED16W {
457        _RESERVED16W { w: self }
458    }
459    #[doc = "Bits 8:15 - 15:8\\] The number of BCLK periods between a WCLK edge and MSB of the first word in a phase: 0x00: LJF and DSP format 0x01: I2S and DSP format 0x02: RJF format ... 0xFF: RJF format Note: When 0, MSB of the next word will be output in the idle period between LSB of the previous word and the start of the next word. Otherwise logical 0 will be output until the data delay has expired."]
460    #[inline]
461    pub fn data_delay(&mut self) -> _DATA_DELAYW {
462        _DATA_DELAYW { w: self }
463    }
464    #[doc = "Bit 7 - 7:7\\] The size of each word stored to or loaded from memory:"]
465    #[inline]
466    pub fn mem_len_24(&mut self) -> _MEM_LEN_24W {
467        _MEM_LEN_24W { w: self }
468    }
469    #[doc = "Bit 6 - 6:6\\] On the serial audio interface, data (and wclk) is sampled and clocked out on opposite edges of BCLK."]
470    #[inline]
471    pub fn smpl_edge(&mut self) -> _SMPL_EDGEW {
472        _SMPL_EDGEW { w: self }
473    }
474    #[doc = "Bit 5 - 5:5\\] Selects dual- or single-phase format. 0: Single-phase: DSP format 1: Dual-phase: I2S, LJF and RJF formats"]
475    #[inline]
476    pub fn dual_phase(&mut self) -> _DUAL_PHASEW {
477        _DUAL_PHASEW { w: self }
478    }
479    #[doc = "Bits 0:4 - 4:0\\] Number of bits per word (8-24): In single-phase format, this is the exact number of bits per word. In dual-phase format, this is the maximum number of bits per word. Values below 8 and above 24 give undefined behavior. Data written to memory is always aligned to 16 or 24 bits as defined by MEM_LEN_24. Bit widths that differ from this alignment will either be truncated or zero padded."]
480    #[inline]
481    pub fn word_len(&mut self) -> _WORD_LENW {
482        _WORD_LENW { w: self }
483    }
484}