1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#[doc = r" Value read from the register"]
pub struct R {
    bits: u32,
}
#[doc = r" Value to write to the register"]
pub struct W {
    bits: u32,
}
impl super::FUNCTION1 {
    #[doc = r" Modifies the contents of the register"]
    #[inline]
    pub fn modify<F>(&self, f: F)
    where
        for<'w> F: FnOnce(&R, &'w mut W) -> &'w mut W,
    {
        let bits = self.register.get();
        let r = R { bits: bits };
        let mut w = W { bits: bits };
        f(&r, &mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Reads the contents of the register"]
    #[inline]
    pub fn read(&self) -> R {
        R {
            bits: self.register.get(),
        }
    }
    #[doc = r" Writes to the register"]
    #[inline]
    pub fn write<F>(&self, f: F)
    where
        F: FnOnce(&mut W) -> &mut W,
    {
        let mut w = W::reset_value();
        f(&mut w);
        self.register.set(w.bits);
    }
    #[doc = r" Writes the reset value to the register"]
    #[inline]
    pub fn reset(&self) {
        self.write(|w| w)
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED25R {
    bits: u8,
}
impl RESERVED25R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct MATCHEDR {
    bits: bool,
}
impl MATCHEDR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED20R {
    bits: u8,
}
impl RESERVED20R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct DATAVADDR1R {
    bits: u8,
}
impl DATAVADDR1R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct DATAVADDR0R {
    bits: u8,
}
impl DATAVADDR0R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct DATAVSIZER {
    bits: u8,
}
impl DATAVSIZER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct LNK1ENAR {
    bits: bool,
}
impl LNK1ENAR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct DATAVMATCHR {
    bits: bool,
}
impl DATAVMATCHR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED6R {
    bits: u8,
}
impl RESERVED6R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Value of the field"]
pub struct EMITRANGER {
    bits: bool,
}
impl EMITRANGER {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct RESERVED4R {
    bits: bool,
}
impl RESERVED4R {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bit(&self) -> bool {
        self.bits
    }
    #[doc = r" Returns `true` if the bit is clear (0)"]
    #[inline]
    pub fn bit_is_clear(&self) -> bool {
        !self.bit()
    }
    #[doc = r" Returns `true` if the bit is set (1)"]
    #[inline]
    pub fn bit_is_set(&self) -> bool {
        self.bit()
    }
}
#[doc = r" Value of the field"]
pub struct FUNCTIONR {
    bits: u8,
}
impl FUNCTIONR {
    #[doc = r" Value of the field as raw bits"]
    #[inline]
    pub fn bits(&self) -> u8 {
        self.bits
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED25W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED25W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 127;
        const OFFSET: u8 = 25;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _MATCHEDW<'a> {
    w: &'a mut W,
}
impl<'a> _MATCHEDW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 24;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED20W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED20W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 20;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DATAVADDR1W<'a> {
    w: &'a mut W,
}
impl<'a> _DATAVADDR1W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 16;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DATAVADDR0W<'a> {
    w: &'a mut W,
}
impl<'a> _DATAVADDR0W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 12;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DATAVSIZEW<'a> {
    w: &'a mut W,
}
impl<'a> _DATAVSIZEW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 10;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _LNK1ENAW<'a> {
    w: &'a mut W,
}
impl<'a> _LNK1ENAW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 9;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _DATAVMATCHW<'a> {
    w: &'a mut W,
}
impl<'a> _DATAVMATCHW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 8;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED6W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED6W<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 3;
        const OFFSET: u8 = 6;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _EMITRANGEW<'a> {
    w: &'a mut W,
}
impl<'a> _EMITRANGEW<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 5;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _RESERVED4W<'a> {
    w: &'a mut W,
}
impl<'a> _RESERVED4W<'a> {
    #[doc = r" Sets the field bit"]
    pub fn set_bit(self) -> &'a mut W {
        self.bit(true)
    }
    #[doc = r" Clears the field bit"]
    pub fn clear_bit(self) -> &'a mut W {
        self.bit(false)
    }
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub fn bit(self, value: bool) -> &'a mut W {
        const MASK: bool = true;
        const OFFSET: u8 = 4;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
#[doc = r" Proxy"]
pub struct _FUNCTIONW<'a> {
    w: &'a mut W,
}
impl<'a> _FUNCTIONW<'a> {
    #[doc = r" Writes raw bits to the field"]
    #[inline]
    pub unsafe fn bits(self, value: u8) -> &'a mut W {
        const MASK: u8 = 15;
        const OFFSET: u8 = 0;
        self.w.bits &= !((MASK as u32) << OFFSET);
        self.w.bits |= ((value & MASK) as u32) << OFFSET;
        self.w
    }
}
impl R {
    #[doc = r" Value of the register as raw bits"]
    #[inline]
    pub fn bits(&self) -> u32 {
        self.bits
    }
    #[doc = "Bits 25:31 - 31:25\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved25(&self) -> RESERVED25R {
        let bits = {
            const MASK: u8 = 127;
            const OFFSET: u8 = 25;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED25R { bits }
    }
    #[doc = "Bit 24 - 24:24\\] This bit is set when the comparator matches, and indicates that the operation defined by FUNCTION has occurred since this bit was last read. This bit is cleared on read."]
    #[inline]
    pub fn matched(&self) -> MATCHEDR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 24;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        MATCHEDR { bits }
    }
    #[doc = "Bits 20:23 - 23:20\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved20(&self) -> RESERVED20R {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 20;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED20R { bits }
    }
    #[doc = "Bits 16:19 - 19:16\\] Identity of a second linked address comparator for data value matching when DATAVMATCH == 1 and LNK1ENA == 1."]
    #[inline]
    pub fn datavaddr1(&self) -> DATAVADDR1R {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 16;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        DATAVADDR1R { bits }
    }
    #[doc = "Bits 12:15 - 15:12\\] Identity of a linked address comparator for data value matching when DATAVMATCH == 1."]
    #[inline]
    pub fn datavaddr0(&self) -> DATAVADDR0R {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 12;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        DATAVADDR0R { bits }
    }
    #[doc = "Bits 10:11 - 11:10\\] Defines the size of the data in the COMP1 register that is to be matched: 0x0: Byte 0x1: Halfword 0x2: Word 0x3: Unpredictable."]
    #[inline]
    pub fn datavsize(&self) -> DATAVSIZER {
        let bits = {
            const MASK: u8 = 3;
            const OFFSET: u8 = 10;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        DATAVSIZER { bits }
    }
    #[doc = "Bit 9 - 9:9\\] Read only bit-field only supported in comparator 1. 0: DATAVADDR1 not supported 1: DATAVADDR1 supported (enabled)"]
    #[inline]
    pub fn lnk1ena(&self) -> LNK1ENAR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 9;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        LNK1ENAR { bits }
    }
    #[doc = "Bit 8 - 8:8\\] Data match feature: 0: Perform address comparison 1: Perform data value compare. The comparators given by DATAVADDR0 and DATAVADDR1 provide the address for the data comparison. The FUNCTION setting for the comparators given by DATAVADDR0 and DATAVADDR1 are overridden and those comparators only provide the address match for the data comparison. This bit is only available in comparator 1."]
    #[inline]
    pub fn datavmatch(&self) -> DATAVMATCHR {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 8;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        DATAVMATCHR { bits }
    }
    #[doc = "Bits 6:7 - 7:6\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved6(&self) -> RESERVED6R {
        let bits = {
            const MASK: u8 = 3;
            const OFFSET: u8 = 6;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        RESERVED6R { bits }
    }
    #[doc = "Bit 5 - 5:5\\] Emit range field. This bit permits emitting offset when range match occurs. PC sampling is not supported when emit range is enabled. This field only applies for: FUNCTION = 1, 2, 3, 12, 13, 14, and 15."]
    #[inline]
    pub fn emitrange(&self) -> EMITRANGER {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 5;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        EMITRANGER { bits }
    }
    #[doc = "Bit 4 - 4:4\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved4(&self) -> RESERVED4R {
        let bits = {
            const MASK: bool = true;
            const OFFSET: u8 = 4;
            ((self.bits >> OFFSET) & MASK as u32) != 0
        };
        RESERVED4R { bits }
    }
    #[doc = "Bits 0:3 - 3:0\\] Function settings: 0x0: Disabled 0x1: EMITRANGE = 0, sample and emit PC through ITM. EMITRANGE = 1, emit address offset through ITM 0x2: EMITRANGE = 0, emit data through ITM on read and write. EMITRANGE = 1, emit data and address offset through ITM on read or write. 0x3: EMITRANGE = 0, sample PC and data value through ITM on read or write. EMITRANGE = 1, emit address offset and data value through ITM on read or write. 0x4: Watchpoint on PC match. 0x5: Watchpoint on read. 0x6: Watchpoint on write. 0x7: Watchpoint on read or write. 0x8: ETM trigger on PC match 0x9: ETM trigger on read 0xA: ETM trigger on write 0xB: ETM trigger on read or write 0xC: EMITRANGE = 0, sample data for read transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) for read transfers 0xD: EMITRANGE = 0, sample data for write transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) for write transfers 0xE: EMITRANGE = 0, sample PC + data for read transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) + data for read transfers 0xF: EMITRANGE = 0, sample PC + data for write transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) + data for write transfers Note 1: If the ETM is not fitted, then ETM trigger is not possible. Note 2: Data value is only sampled for accesses that do not fault (MPU or bus fault). The PC is sampled irrespective of any faults. The PC is only sampled for the first address of a burst. Note 3: FUNCTION is overridden for comparators given by DATAVADDR0 and DATAVADDR1 if DATAVMATCH is also set. The comparators given by DATAVADDR0 and DATAVADDR1 can then only perform address comparator matches for comparator 1 data matches. Note 4: If the data matching functionality is not included during implementation it is not possible to set DATAVADDR0, DATAVADDR1, or DATAVMATCH. This means that the data matching functionality is not available in the implementation. Test the availability of data matching by writing and reading DATAVMATCH. If it is not settable then data matching is unavailable. Note 5: PC match is not recommended for watchpoints because it stops after the instruction. It mainly guards and triggers the ETM."]
    #[inline]
    pub fn function(&self) -> FUNCTIONR {
        let bits = {
            const MASK: u8 = 15;
            const OFFSET: u8 = 0;
            ((self.bits >> OFFSET) & MASK as u32) as u8
        };
        FUNCTIONR { bits }
    }
}
impl W {
    #[doc = r" Reset value of the register"]
    #[inline]
    pub fn reset_value() -> W {
        W { bits: 512 }
    }
    #[doc = r" Writes raw bits to the register"]
    #[inline]
    pub unsafe fn bits(&mut self, bits: u32) -> &mut Self {
        self.bits = bits;
        self
    }
    #[doc = "Bits 25:31 - 31:25\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved25(&mut self) -> _RESERVED25W {
        _RESERVED25W { w: self }
    }
    #[doc = "Bit 24 - 24:24\\] This bit is set when the comparator matches, and indicates that the operation defined by FUNCTION has occurred since this bit was last read. This bit is cleared on read."]
    #[inline]
    pub fn matched(&mut self) -> _MATCHEDW {
        _MATCHEDW { w: self }
    }
    #[doc = "Bits 20:23 - 23:20\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved20(&mut self) -> _RESERVED20W {
        _RESERVED20W { w: self }
    }
    #[doc = "Bits 16:19 - 19:16\\] Identity of a second linked address comparator for data value matching when DATAVMATCH == 1 and LNK1ENA == 1."]
    #[inline]
    pub fn datavaddr1(&mut self) -> _DATAVADDR1W {
        _DATAVADDR1W { w: self }
    }
    #[doc = "Bits 12:15 - 15:12\\] Identity of a linked address comparator for data value matching when DATAVMATCH == 1."]
    #[inline]
    pub fn datavaddr0(&mut self) -> _DATAVADDR0W {
        _DATAVADDR0W { w: self }
    }
    #[doc = "Bits 10:11 - 11:10\\] Defines the size of the data in the COMP1 register that is to be matched: 0x0: Byte 0x1: Halfword 0x2: Word 0x3: Unpredictable."]
    #[inline]
    pub fn datavsize(&mut self) -> _DATAVSIZEW {
        _DATAVSIZEW { w: self }
    }
    #[doc = "Bit 9 - 9:9\\] Read only bit-field only supported in comparator 1. 0: DATAVADDR1 not supported 1: DATAVADDR1 supported (enabled)"]
    #[inline]
    pub fn lnk1ena(&mut self) -> _LNK1ENAW {
        _LNK1ENAW { w: self }
    }
    #[doc = "Bit 8 - 8:8\\] Data match feature: 0: Perform address comparison 1: Perform data value compare. The comparators given by DATAVADDR0 and DATAVADDR1 provide the address for the data comparison. The FUNCTION setting for the comparators given by DATAVADDR0 and DATAVADDR1 are overridden and those comparators only provide the address match for the data comparison. This bit is only available in comparator 1."]
    #[inline]
    pub fn datavmatch(&mut self) -> _DATAVMATCHW {
        _DATAVMATCHW { w: self }
    }
    #[doc = "Bits 6:7 - 7:6\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved6(&mut self) -> _RESERVED6W {
        _RESERVED6W { w: self }
    }
    #[doc = "Bit 5 - 5:5\\] Emit range field. This bit permits emitting offset when range match occurs. PC sampling is not supported when emit range is enabled. This field only applies for: FUNCTION = 1, 2, 3, 12, 13, 14, and 15."]
    #[inline]
    pub fn emitrange(&mut self) -> _EMITRANGEW {
        _EMITRANGEW { w: self }
    }
    #[doc = "Bit 4 - 4:4\\] Software should not rely on the value of a reserved. Writing any other value than the reset value may result in undefined behavior."]
    #[inline]
    pub fn reserved4(&mut self) -> _RESERVED4W {
        _RESERVED4W { w: self }
    }
    #[doc = "Bits 0:3 - 3:0\\] Function settings: 0x0: Disabled 0x1: EMITRANGE = 0, sample and emit PC through ITM. EMITRANGE = 1, emit address offset through ITM 0x2: EMITRANGE = 0, emit data through ITM on read and write. EMITRANGE = 1, emit data and address offset through ITM on read or write. 0x3: EMITRANGE = 0, sample PC and data value through ITM on read or write. EMITRANGE = 1, emit address offset and data value through ITM on read or write. 0x4: Watchpoint on PC match. 0x5: Watchpoint on read. 0x6: Watchpoint on write. 0x7: Watchpoint on read or write. 0x8: ETM trigger on PC match 0x9: ETM trigger on read 0xA: ETM trigger on write 0xB: ETM trigger on read or write 0xC: EMITRANGE = 0, sample data for read transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) for read transfers 0xD: EMITRANGE = 0, sample data for write transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) for write transfers 0xE: EMITRANGE = 0, sample PC + data for read transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) + data for read transfers 0xF: EMITRANGE = 0, sample PC + data for write transfers. EMITRANGE = 1, sample Daddr (lower 16 bits) + data for write transfers Note 1: If the ETM is not fitted, then ETM trigger is not possible. Note 2: Data value is only sampled for accesses that do not fault (MPU or bus fault). The PC is sampled irrespective of any faults. The PC is only sampled for the first address of a burst. Note 3: FUNCTION is overridden for comparators given by DATAVADDR0 and DATAVADDR1 if DATAVMATCH is also set. The comparators given by DATAVADDR0 and DATAVADDR1 can then only perform address comparator matches for comparator 1 data matches. Note 4: If the data matching functionality is not included during implementation it is not possible to set DATAVADDR0, DATAVADDR1, or DATAVMATCH. This means that the data matching functionality is not available in the implementation. Test the availability of data matching by writing and reading DATAVMATCH. If it is not settable then data matching is unavailable. Note 5: PC match is not recommended for watchpoints because it stops after the instruction. It mainly guards and triggers the ETM."]
    #[inline]
    pub fn function(&mut self) -> _FUNCTIONW {
        _FUNCTIONW { w: self }
    }
}