1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
//! This module provides a framework for constructing and evaluating arithmetic circuits.
//! It supports operations such as addition, multiplication, and custom operations through hint gates.
//! The circuits can be constructed dynamically, evaluated in parallel layers, and verified with equality constraints.
//! This flexible architecture is suitable for applications requiring configurable computational graphs, such as in
//! cryptographic schemes or complex algorithm simulations.
//!
//! # Example Usage:
//! ```rust
//! use capy_graph::Circuit;
//! use std::sync::Arc;
//!
//! let mut circuit = Circuit::new();
//! let x = circuit.constant(10);
//! let y = circuit.add(x, x);
//! let custom_operation = Arc::new(|val: u32| val * 2);
//! let z = circuit.hint(x, custom_operation);
//! circuit.assert_equal(y, z);
//!
//! let input_values = vec![10];
//! let debug = true;
//! assert!(circuit.evaluate(&input_values, debug).is_ok());
//! assert!(circuit.check_constraints().is_ok());
//! ```
//!
//! This example demonstrates creating a circuit with constant inputs, adding two nodes,
//! applying a custom doubling operation, and asserting equality conditions. It also shows how
//! to evaluate the circuit with debugging enabled to trace computation values and performance.
mod tests;
use rand::distributions::{Distribution, Uniform};
use rayon::iter::{IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};
use std::{
collections::{HashSet, VecDeque},
fmt,
panic::{catch_unwind, AssertUnwindSafe},
sync::{
atomic::{AtomicUsize, Ordering},
Arc, Mutex,
},
time::{Duration, Instant},
};
use thiserror::Error;
/// Enum to represent errors that can occur within the Circuit operations.
#[derive(Error, Debug)]
pub enum CircuitError {
#[error("Cannot evaluate an empty circuit")]
EmptyCircuit,
#[error("Error evaluating node: {0}")]
NodeEvaluationError(String),
#[error("Constraint check failed")]
ConstraintCheckFailure,
}
/// Represents a gate in an arithmetic circuit.
///
/// Variants:
/// - `Add`: Adds the values from two nodes identified by their indices.
/// - `Multiply`: Multiplies the values from two nodes identified by their indices.
/// - `Hint`: A custom gate which allows for applying any user-defined operation.
/// It takes a single `u32` input and produces a `u32` output, defined by a closure.
#[derive(Clone)]
pub enum Gate {
Add(usize, usize),
Multiply(usize, usize),
Hint(usize, Arc<dyn Fn(u32) -> u32 + Send + Sync>),
}
/// Represents a node within an arithmetic circuit.
///
/// Variants:
/// - `Input(u32)`: A constant input value to the circuit. Set once and used during execution.
/// - `Variable`: Represents a variable whose value is determined during the circuit's execution.
/// - `Operation`: Applies an operation defined by a `Gate` to inputs, dynamically during execution.
#[derive(Clone)]
pub enum Node {
Input(u32),
Variable,
Operation(Gate, Vec<usize>),
}
/// Represents an arithmetic circuit.
/// This struct manages nodes, gates, and the evaluation process of the circuit.
/// It supports adding various types of nodes, including constants, variables, and operations,
/// and provides methods to evaluate the circuit, check constraints, and apply custom operations.
pub struct Circuit {
nodes: Vec<Node>, // Holds all nodes within the circuit, including inputs, variables, or operations.
equalities: Vec<(usize, usize)>, // Tracks equality constraints between pairs of node indices.
layers: Option<Vec<Vec<usize>>>, // Organized layers for efficient evaluation and parallel processing.
results: Vec<u32>, // Stores the computation results of the circuit nodes after evaluation.
total_duration: Duration, // Total time taken to evaluate the circuit.
number_of_layers: usize, // Number of layers used during the parallel evaluation of the circuit.
number_of_constraints: usize, // Total number of equality constraints defined in the circuit.
total_hint_gates: AtomicUsize, // Counter for the number of hint gates processed during evaluation.
total_gates_processed: AtomicUsize, // Counter for the total number of gates processed during evaluation.
gates_per_second: f64, // Computation throughput: number of gates processed per second.
}
// Default implementation of `Circuit` that clippy realllly wants to keep adding in...
impl Default for Circuit {
fn default() -> Self {
Self::new()
}
}
impl Circuit {
/// Create a new circuit and initialize all fields to empty.
pub fn new() -> Self {
Circuit {
nodes: Vec::new(),
equalities: Vec::new(),
layers: None,
results: Vec::new(),
total_gates_processed: AtomicUsize::new(0),
total_hint_gates: AtomicUsize::new(0),
total_duration: Duration::new(0, 0),
number_of_layers: 0,
number_of_constraints: 0,
gates_per_second: 0.0,
}
}
// Insert a gate into the circuit. Returns the index
// of the newly inserted node.
fn insert_gate(&mut self, gate: Gate) -> usize {
let dependencies = match &gate {
Gate::Add(left, right) => vec![*left, *right],
Gate::Multiply(left, right) => vec![*left, *right],
Gate::Hint(idx, _) => vec![*idx],
};
self.nodes.push(Node::Operation(gate, dependencies));
self.nodes.len() - 1
}
/// Inserts an input node into the circuit. Any number of input
/// nodes can be inserted. Their values are then set in sequence
/// by passing a list of `u32`s to `circuit.evaluate(&[])`.
/// Returns the index of the newly inserted node.
///
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.init();
/// let y = circuit.init();
/// let z = circuit.init();
/// let debug = true;
/// assert!(circuit.evaluate(&[1, 2, 3], debug).is_ok());
/// ```
pub fn init(&mut self) -> usize {
self.nodes.push(Node::Variable);
self.nodes.len() - 1
}
/// Inserts a constant-valued node into the circuit.
/// Returns the index of the newly inserted node.
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.constant(42);
/// let y = circuit.mul(x, x);
/// ```
pub fn constant(&mut self, value: u32) -> usize {
self.nodes.push(Node::Input(value));
self.nodes.len() - 1
}
/// Inserts an `addition` node into the circuit. It has max fan-in
/// of 2 and accepts the indices of the nodes to add. Addition is
/// saturated; overflow yields the max `u32` value, underflow yields
/// the minimum.
///
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.constant(42);
/// let y = circuit.add(x, x);
/// ```
pub fn add(&mut self, idx: usize, idx2: usize) -> usize {
self.insert_gate(Gate::Add(idx, idx2))
}
/// Inserts a `multiplication` node into the circuit. It has max fan-in
/// of 2 and accepts the indices of the nodes to multiply. Multiplication
/// is saturated; overflow yields the max `u32` value, underflow yields
/// the minimum.
///
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.constant(42);
/// let y = circuit.mul(x, x);
/// ```
pub fn mul(&mut self, idx1: usize, idx2: usize) -> usize {
self.insert_gate(Gate::Multiply(idx1, idx2))
}
/// Inserts a custom function into the circuit. This function
/// is passed as a closure with trait bounds restricted to
/// `Send` + `Sync` in order to support layerization
/// and parallel circuit evaluation. The circuit will
/// catch any panics (i.e. dividing by zero) as a `CircuitError`.
///
/// ### Usage:
/// ```
/// use capy_graph::Circuit;
/// use std::sync::Arc;
/// let mut circuit = Circuit::new();
/// let two = circuit.init();
/// let b = circuit.constant(16);
/// // the circuit doesn't support division, so we hint it
/// let c = circuit.hint(
/// b,
/// Arc::new(|x: u32| x / 8) as Arc<dyn Fn(u32) -> u32 + Send + Sync>
/// );
/// // then we establish a constraint to ensure the hint is executed correctly
/// let constraint = circuit.mul(c, two);
/// circuit.assert_equal(two, c);
/// let debug = true;
/// assert!(circuit.evaluate(&[2], debug).is_ok());
/// assert!(circuit.check_constraints().is_ok());
/// ```
pub fn hint(&mut self, idx: usize, func: Arc<dyn Fn(u32) -> u32 + Send + Sync>) -> usize {
self.insert_gate(Gate::Hint(idx, func))
}
/// Inserts a constraint-check between two nodes into the circuit.
/// This is useful for asserting that custom functions were executed
/// correctly.
///
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.init();
/// let y = circuit.constant(42);
/// circuit.assert_equal(x, y);
/// circuit.evaluate(&[42], false);
/// assert!(circuit.check_constraints().is_ok());
/// ```
pub fn assert_equal(&mut self, idx1: usize, idx2: usize) {
self.equalities.push((idx1, idx2));
}
/// Checks if all constraints in the circuit are satisfied.
/// Returns `Ok(())` if all constraints are satisfied, or
/// `Err(CircuitError::ConstraintCheckFailure)` if any constraint fails.
/// ### Usage:
/// ```
/// let mut circuit = capy_graph::Circuit::new();
/// let x = circuit.init();
/// let y = circuit.constant(42);
/// circuit.assert_equal(x, y);
/// circuit.evaluate(&[42], false);
/// assert!(circuit.check_constraints().is_ok());
/// ```
pub fn check_constraints(&self) -> Result<(), CircuitError> {
if self
.equalities
.iter()
.all(|&(idx1, idx2)| self.results[idx1] == self.results[idx2])
{
Ok(())
} else {
Err(CircuitError::ConstraintCheckFailure)
}
}
/// Evaluates the circuit, initializing all `init` nodes to a list of input `u32` values.
/// Inputs are initialized sequentially as they appear in the input list.
/// Gracefully errors on any panic introduced from a custom hint or when attempting
/// to evaluate an empty circuit.
/// Optionally print debug information from the evaluation. These details include:
/// - evaluation circuit evaluation time
/// - number of layers
/// - number of gates
/// - number of hints
/// - number of constraints
/// - number of gates processed per second
///
/// # Example Usage:
/// ```rust
/// use capy_graph::Circuit;
/// use std::sync::Arc;
///
/// let mut circuit = Circuit::new();
/// let x = circuit.constant(10);
/// let y = circuit.add(x, x);
/// let custom_operation = Arc::new(|val: u32| val * 2);
/// let z = circuit.hint(x, custom_operation);
/// circuit.assert_equal(y, z);
///
/// let input_values = vec![10];
/// let debug = true;
/// assert!(circuit.evaluate(&input_values, debug).is_ok());
/// assert!(circuit.check_constraints().is_ok());
/// ```
pub fn evaluate(&mut self, input_vals: &[u32], debug: bool) -> Result<(), CircuitError> {
if self.nodes.is_empty() {
return Err(CircuitError::EmptyCircuit);
}
let mut results = vec![0; self.nodes.len()];
let start_time = Instant::now();
let total_gates_processed = AtomicUsize::new(0);
let total_hint_gates = AtomicUsize::new(0);
// Use parallel Kahn's to split the graph into its requisite layers
self.layerize();
self.number_of_layers = self.layers.as_ref().map_or(0, Vec::len);
self.number_of_constraints = self.equalities.len();
if let Some(layers) = &self.layers {
for (i, layer) in layers.iter().enumerate() {
let layer_start = Instant::now();
let layer_results: Result<Vec<_>, CircuitError> = layer
.par_iter() // Use Rayon's parallel iterator here
.map(|&node_idx| {
let node = &self.nodes[node_idx];
match node {
Node::Input(value) => Ok(*value),
Node::Variable => Ok(input_vals[node_idx]),
Node::Operation(gate, _) => {
if matches!(gate, Gate::Hint(_, _)) {
total_hint_gates.fetch_add(1, Ordering::Relaxed);
}
total_gates_processed.fetch_add(1, Ordering::Relaxed);
self.evaluate_gate(gate, &results)
}
}
})
.collect();
let layer_results = layer_results?;
let layer_duration = layer_start.elapsed();
// Update results after processing each layer
for (&node_idx, &result) in layer.iter().zip(layer_results.iter()) {
results[node_idx] = result;
}
if debug {
println!("Layer {}: Processed in {:?}", i + 1, layer_duration);
}
}
}
// Collect debug information into self
self.total_hint_gates = total_hint_gates;
self.results = results;
self.total_duration = start_time.elapsed();
if self.total_duration > Duration::ZERO {
self.gates_per_second = total_gates_processed.load(Ordering::Relaxed) as f64
/ self.total_duration.as_secs_f64();
}
self.total_gates_processed = total_gates_processed;
if debug {
println!("{}", self)
}
Ok(())
}
// Defines the operations of the gates in the circuit and specifies the format of the
// `hint` gate. Returns `CircuitError` if hint function panics for any reason.
fn evaluate_gate(&self, gate: &Gate, results: &[u32]) -> Result<u32, CircuitError> {
match gate {
Gate::Add(left, right) => Ok(results[*left].saturating_add(results[*right])),
Gate::Multiply(left, right) => Ok(results[*left].saturating_mul(results[*right])),
Gate::Hint(idx, func) => {
let result = catch_unwind(AssertUnwindSafe(|| func(results[*idx])));
result.map_err(|_| CircuitError::NodeEvaluationError("Function panic".to_string()))
}
}
}
// Topological sort using parallel Kahn's algorithm: https://dl.acm.org/doi/10.1145/368996.369025
// Finds and seperates all nodes and gates into layers based on their dependencies. This facilitates
// parallel evaluation of the circuit, hypothetically increasing evaluation performance and throughput.
fn layerize(&mut self) {
let nodes = Arc::new(self.nodes.clone());
let num_nodes = nodes.len();
let in_degree = Arc::new(Mutex::new(vec![0; num_nodes]));
let graph = Arc::new(Mutex::new(vec![vec![]; num_nodes]));
// Initialize graph and in_degree using rayon
(0..num_nodes).into_par_iter().for_each(|node_idx| {
if let Node::Operation(_, deps) = &nodes[node_idx] {
let mut graph_lock = graph.lock().unwrap();
let mut in_degree_lock = in_degree.lock().unwrap();
for &dep in deps {
graph_lock[dep].push(node_idx);
in_degree_lock[node_idx] += 1;
}
}
});
// Determine the initial layer of nodes with zero in-degree
let mut queue = VecDeque::new();
let mut layers = Vec::new();
{
let in_deg = in_degree.lock().unwrap();
for (i, °ree) in in_deg.iter().enumerate() {
if degree == 0 {
queue.push_back(i);
}
}
}
// Process the layers
while !queue.is_empty() {
let current_layer: Vec<_> = queue.drain(..).collect();
layers.push(current_layer.clone());
let mut next_layer = HashSet::new();
{
let graph_lock = graph.lock().unwrap();
let mut in_deg_lock = in_degree.lock().unwrap();
for &node_idx in ¤t_layer {
for &dependent in &graph_lock[node_idx] {
in_deg_lock[dependent] -= 1;
if in_deg_lock[dependent] == 0 {
next_layer.insert(dependent);
}
}
}
}
for node in next_layer {
queue.push_back(node);
}
}
self.layers = Some(layers);
}
/// Generate an arbitrary-size, random combination of nodes and gates for testing purposes.
/// Includes a mix of variants from the `Gate` enum as well as a custom hint. Automatically
/// constrains the hint and creates random dependencies between nodes.
/// ### Usage:
/// ```
/// use capy_graph::Circuit;
/// let mut circuit = Circuit::new();
/// // Generate a large random circuit
/// let num_gates = 100000;
/// circuit.generate_random(num_gates);
/// // Mock input
/// let inputs = vec![42; 10];
/// // Evaluate the circuit
/// assert!(circuit.evaluate(&inputs, true).is_ok());
/// // check all random constraints
/// assert!(circuit.check_constraints().is_ok());
/// ```
pub fn generate_random(&mut self, num_gates: usize) {
let num_inputs = 10; // Fixed number of input variables
// Initialize input nodes with random values
for _ in 0..num_inputs {
self.constant(rand::random::<u32>() % 100);
}
let custom_funcs: Vec<Arc<dyn Fn(u32) -> u32 + Send + Sync>> =
vec![Arc::new(|x| (x as f32).sqrt().round() as u32)];
let mut rng = rand::thread_rng();
let gate_dist = Uniform::from(0..3); // For Add, Multiply, Custom
let index_dist = Uniform::from(0..self.nodes.len());
let func_dist = Uniform::from(0..custom_funcs.len());
for _ in 0..num_gates {
// Sample some random gates
let gate_type = gate_dist.sample(&mut rng);
let idx1 = index_dist.sample(&mut rng);
match gate_type {
0 => {
self.add(idx1, index_dist.sample(&mut rng));
}
1 => {
self.mul(idx1, index_dist.sample(&mut rng));
}
2 => {
// Hint function
let func_idx = func_dist.sample(&mut rng);
let func_node = self.hint(idx1, custom_funcs[func_idx].clone());
// If we add a hint into the circuit, let's also add an accompanying
// equality check to enforce the constraint automatically
let verification_node =
self.apply_equality_constraint(func_node, func_idx, idx1);
// Assert that original and verified are equal
self.assert_equal(idx1, verification_node);
}
_ => unreachable!(),
}
}
}
// Helper function applies an equality constraint to a randomly generated hint
fn apply_equality_constraint(
&mut self,
func_node: usize,
func_idx: usize,
original_idx: usize,
) -> usize {
match func_idx {
3 => self.hint(func_node, Arc::new(|x| x * x)), // Check sqrt by squaring
_ => original_idx,
}
}
}
impl fmt::Display for Circuit {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "Circuit Evaluation Summary:")?;
writeln!(f, "Total evaluation time: {:?}", self.total_duration)?;
writeln!(f, "Number of layers: {}", self.number_of_layers)?;
writeln!(f, "Number of constraints: {}", self.number_of_constraints)?;
writeln!(
f,
"Number of hint gates processed: {}",
self.total_hint_gates.load(Ordering::Relaxed)
)?;
writeln!(
f,
"Total gates processed: {}",
self.total_gates_processed.load(Ordering::Relaxed)
)?;
writeln!(
f,
"Gates processed per second: {:.2}",
self.gates_per_second
)?;
Ok(())
}
}