candle_birnn/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//
//                       _oo0oo_
//                      o8888888o
//                      88" . "88
//                      (| -_- |)
//                      0\  =  /0
//                    ___/`---'\___
//                  .' \\|     |// '.
//                 / \\|||  :  |||// \
//                / _||||| -:- |||||- \
//               |   | \\\  -  /// |   |
//               | \_|  ''\---/''  |_/ |
//               \  .-\__  '-'  ___/-. /
//             ___'. .'  /--.--\  `. .'___
//          ."" '<  `.___\_<|>_/___.' >' "".
//         | | :  `- \`.;`\ _ /`;.`/ - ` : | |
//         \  \ `_.   \_ __\ /__ _/   .-` /  /
//     =====`-.____`.___ \_____/___.-`___.-'=====
//                       `=---='
//
//
//     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
//               佛祖保佑         永無BUG
//
// FROM: https://gist.github.com/edokeh/7580064
//

use candle_core::{IndexOp, Result, Tensor};
use candle_nn::{rnn::LSTMState, LSTMConfig, VarBuilder, LSTM, RNN};

pub use candle_nn::lstm;

/// Create a reverse LSTM layer.
pub fn reverse_lstm(
    in_dim: usize,
    hidden_dim: usize,
    config: LSTMConfig,
    vb: VarBuilder,
) -> Result<LSTM> {
    let prefix = vb.prefix();
    let vb = vb.rename_f(move |s| {
        let s = format!("{}_reverse", s);
        if prefix != "" {
            s[prefix.len() + 1..].to_string()
        } else {
            s
        }
    });
    lstm(in_dim, hidden_dim, config, vb)
}

/// Trait for Torch RNN.
pub trait TchRNN: RNN {
    /// Applies multiple steps of the recurrent network.
    ///
    /// The input should have dimensions [seq_len, batch_size, features].
    /// The initial state is the result of applying zero_state.
    fn tch_seq(&self, input: &Tensor) -> Result<Vec<Self::State>> {
        let (_seq_len, batch_dim, _features) = input.dims3()?;
        let init_state = self.zero_state(batch_dim)?;
        self.tch_seq_init(input, &init_state)
    }

    /// Applies multiple steps of the recurrent network.
    ///
    /// The input should have dimensions [seq_len, batch_size, features].
    fn tch_seq_init(&self, input: &Tensor, init_state: &Self::State) -> Result<Vec<Self::State>> {
        let (seq_len, _batch_dim, _features) = input.dims3()?;
        let mut output = Vec::with_capacity(seq_len);
        for seq_index in 0..seq_len {
            let input = input.get(seq_index)?;
            let state = if seq_index == 0 {
                self.step(&input, init_state)?
            } else {
                self.step(&input, &output[seq_index - 1])?
            };
            output.push(state);
        }
        Ok(output)
    }

    /// Converts a sequence of state to a tensor.
    fn tch_states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor>;
}

impl TchRNN for LSTM {
    fn tch_states_to_tensor(&self, states: &[Self::State]) -> Result<Tensor> {
        let states = states.iter().map(|s| s.h().clone()).collect::<Vec<_>>();
        Tensor::stack(&states, 0)
    }
}

pub trait BiRNN<'a> {
    type State: Clone;
    type Item: RNN<State = Self::State>;

    fn forward(&'a self) -> &'a Self::Item;
    fn backward(&'a self) -> &'a Self::Item;

    fn zero_state(&'a self, batch_dim: usize) -> Result<(Self::State, Self::State)> {
        let forward = self.forward().zero_state(batch_dim)?;
        let backward = self.backward().zero_state(batch_dim)?;
        Ok((forward, backward))
    }

    fn step(
        &'a self,
        input: (&Tensor, &Tensor),
        state: &(Self::State, Self::State),
    ) -> Result<(Self::State, Self::State)> {
        Ok((
            self.forward().step(input.0, &state.0)?,
            self.backward().step(input.1, &state.1)?,
        ))
    }

    fn seq(&'a self, input: &Tensor) -> Result<Vec<(Self::State, Self::State)>> {
        let (batch_dim, _seq_len, _features) = input.dims3()?;
        let init_state = self.zero_state(batch_dim)?;
        self.seq_init(input, &init_state)
    }

    fn seq_init(
        &'a self,
        input: &Tensor,
        init_state: &(Self::State, Self::State),
    ) -> Result<Vec<(Self::State, Self::State)>> {
        let (_batch_dim, seq_len, _features) = input.dims3()?;
        let mut out_f = Vec::with_capacity(seq_len);
        let mut out_b = Vec::with_capacity(seq_len);

        let seq_len = seq_len - 1;
        let f = self.forward();
        let b = self.backward();
        for seq_index in 0..=seq_len {
            let input_f = input.i((.., seq_index, ..))?.contiguous()?;
            let state_f = if seq_index == 0 {
                f.step(&input_f, &init_state.0)?
            } else {
                f.step(&input_f, &out_f[seq_index - 1])?
            };
            out_f.push(state_f);

            let input_b = input.i((.., seq_len - seq_index, ..))?.contiguous()?;
            let state_b = if seq_index == 0 {
                b.step(&input_b, &init_state.1)?
            } else {
                b.step(&input_b, &out_b[seq_index - 1])?
            };
            out_b.push(state_b);
        }

        out_b.reverse();

        let output = out_f
            .into_iter()
            .zip(out_b.into_iter())
            .map(|(f, b)| (f, b))
            .collect::<Vec<_>>();

        Ok(output)
    }

    fn tch_seq(&'a self, input: &Tensor) -> Result<Vec<(Self::State, Self::State)>> {
        let (_seq_len, batch_dim, _features) = input.dims3()?;
        let init_state = self.zero_state(batch_dim)?;
        self.tch_seq_init(input, &init_state)
    }

    fn tch_seq_init(
        &'a self,
        input: &Tensor,
        init_state: &(Self::State, Self::State),
    ) -> Result<Vec<(Self::State, Self::State)>> {
        let (seq_len, _batch_dim, _features) = input.dims3()?;
        let mut out_f = Vec::with_capacity(seq_len);
        let mut out_b = Vec::with_capacity(seq_len);

        let seq_len = seq_len - 1;
        let f = self.forward();
        let b = self.backward();
        for seq_index in 0..=seq_len {
            let input_f = input.get(seq_index)?;
            let state_f = if seq_index == 0 {
                f.step(&input_f, &init_state.0)?
            } else {
                f.step(&input_f, &out_f[seq_index - 1])?
            };
            out_f.push(state_f);

            let input_b = input.get(seq_len - seq_index)?;
            let state_b = if seq_index == 0 {
                b.step(&input_b, &init_state.1)?
            } else {
                b.step(&input_b, &out_b[seq_index - 1])?
            };
            out_b.push(state_b);
        }

        out_b.reverse();

        let output = out_f
            .into_iter()
            .zip(out_b.into_iter())
            .map(|(f, b)| (f, b))
            .collect::<Vec<_>>();

        Ok(output)
    }

    fn tch_states_to_tensor(&'a self, states: &[(Self::State, Self::State)]) -> Result<Tensor>;
    fn states_to_tensor(&'a self, states: &[(Self::State, Self::State)]) -> Result<Tensor>;
}

/// Create a bidirectional LSTM layer.
pub fn bi_lstm(
    in_dim: usize,
    hidden_dim: usize,
    config: LSTMConfig,
    vb: VarBuilder,
) -> Result<BiLSTM> {
    Ok(BiLSTM {
        forward: lstm(in_dim, hidden_dim, config.clone(), vb.clone())?,
        backward: reverse_lstm(in_dim, hidden_dim, config, vb)?,
    })
}

/// Bidirectional LSTM layer.
pub struct BiLSTM {
    forward: LSTM,  // forward LSTM
    backward: LSTM, // backward LSTM
}

impl<'a> BiRNN<'a> for BiLSTM {
    type State = LSTMState;
    type Item = LSTM;

    fn forward(&'a self) -> &'a Self::Item {
        &self.forward
    }

    fn backward(&'a self) -> &'a Self::Item {
        &self.backward
    }

    fn tch_states_to_tensor(&'a self, states: &[(Self::State, Self::State)]) -> Result<Tensor> {
        let tensors = states
            .iter()
            .map(|s| {
                let f = s.0.h().clone();
                let b = s.1.h().clone();
                //Tensor::cat(args, dim)
                Tensor::cat(&[f, b], 1).unwrap()
            })
            .collect::<Vec<_>>();
        Tensor::stack(&tensors, 0)
    }

    fn states_to_tensor(&'a self, states: &[(Self::State, Self::State)]) -> Result<Tensor> {
        let tensors = states
            .iter()
            .map(|s| {
                let f = s.0.h().clone();
                let b = s.1.h().clone();
                //Tensor::cat(args, dim)
                Tensor::cat(&[f, b], 1).unwrap()
            })
            .collect::<Vec<_>>();
        Tensor::stack(&tensors, 1)
    }
}

#[cfg(test)]
mod tests {
    static IN_DIM: usize = 10;
    static HIDDEN_DIM: usize = 20;

    use std::path::Path;

    use anyhow::Result;
    use candle_core::WithDType;
    use candle_core::{DType, Device, D};
    use candle_nn::VarBuilder;
    use std::fmt::Debug;

    use super::*;

    #[allow(dead_code)]
    fn show_vec3<Dtype: WithDType + Debug>(input: &Vec<Vec<Vec<Dtype>>>) {
        for a in input {
            for b in a {
                println!("{:?}", b)
            }
        }
    }

    fn assert_tensor(a: &Tensor, b: &Tensor, dim: usize, v: f32) -> Result<()> {
        assert_eq!(a.dims(), b.dims());
        let mut t = (a - b)?.abs()?;

        for _i in 0..dim {
            t = t.max(D::Minus1)?;
        }

        let t = t.to_scalar::<f32>()?;
        assert!(t < v);
        Ok(())
    }

    fn load_pt<P: AsRef<Path>>(path: P) -> Result<VarBuilder<'static>> {
        Ok(VarBuilder::from_pth(path, DType::F32, &Device::Cpu)?)
    }

    #[test]
    fn test_reverse_lstm() -> Result<()> {
        let vb = load_pt("bi_lstm_test.pt")?;
        reverse_lstm(IN_DIM, HIDDEN_DIM, LSTMConfig::default(), vb)?;
        Ok(())
    }

    #[test]
    fn test_sub() -> Result<()> {
        let a = Tensor::rand(-0.1_f32, 1.0_f32, (3, 5), &Device::Cpu)?;
        println!("a: {:?}", a);
        let b = Tensor::rand(-0.1_f32, 1.0_f32, (3, 5), &Device::Cpu)?;
        println!("b: {:?}", b);

        assert_tensor(&a, &b, 2, 1.0)?;

        Ok(())
    }

    #[test]
    fn test_tch_lstm() -> Result<()> {
        let vb = load_pt("lstm_test.pt")?;
        let lstm = lstm(IN_DIM, HIDDEN_DIM, LSTMConfig::default(), vb.clone())?;
        let input = vb.get((5, 3, 10), "input")?;
        let answer = vb.get((5, 3, 20), "output")?;

        let states = lstm.tch_seq(&input)?;
        let output = lstm.tch_states_to_tensor(&states)?;

        //show_vec3::<f32>(&output.to_vec3()?);
        assert_tensor(&output, &answer, 3, 0.000001)?;
        Ok(())
    }

    #[test]
    fn test_tch_bilstm() -> Result<()> {
        let vb = load_pt("bi_lstm_test.pt")?;
        let bilstm = bi_lstm(IN_DIM, HIDDEN_DIM, LSTMConfig::default(), vb.clone())?;
        let input = vb.get((5, 3, 10), "input")?;
        let answer = vb.get((5, 3, 40), "output")?;

        let states = bilstm.tch_seq(&input)?;
        let output = bilstm.tch_states_to_tensor(&states)?;

        println!("{:?}", output.shape());
        //show_vec3::<f32>(&output.to_vec3()?);
        assert_tensor(&output, &answer, 3, 0.000001)?;
        Ok(())
    }

    #[test]
    fn test_candle_lstm() -> Result<()> {
        let vb = load_pt("lstm_test.pt")?;
        let lstm = lstm(IN_DIM, HIDDEN_DIM, LSTMConfig::default(), vb.clone())?;
        let input = vb.get((5, 3, 10), "input")?;
        let answer = vb.get((5, 3, 20), "output")?;

        let input = input.transpose(0, 1)?.contiguous()?;
        let states = lstm.seq(&input)?;
        let output = lstm.states_to_tensor(&states)?;
        let output = output.transpose(0, 1)?.contiguous()?;
        //println!("{:?}", output.shape());
        //show_vec3::<f32>(&output.to_vec3()?);
        assert_tensor(&output, &answer, 3, 0.000001)?;
        Ok(())
    }

    #[test]
    fn test_candle_bilstm() -> Result<()> {
        let vb = load_pt("bi_lstm_test.pt")?;
        let bilstm = bi_lstm(IN_DIM, HIDDEN_DIM, LSTMConfig::default(), vb.clone())?;
        let input = vb.get((5, 3, 10), "input")?;
        let answer = vb.get((5, 3, 40), "output")?;

        let input = input.transpose(0, 1)?.contiguous()?;
        let states = bilstm.seq(&input)?;
        let output = bilstm.states_to_tensor(&states)?;
        let output = output.transpose(0, 1)?.contiguous()?;
        //println!("{:?}", output.shape());
        //show_vec3::<f32>(&output.to_vec3()?);
        assert_tensor(&output, &answer, 3, 0.000001)?;
        Ok(())
    }
}