1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
//! `canbench` is a tool for benchmarking canisters on the Internet Computer.
//!
//! ## Quickstart
//!
//! This example is also available to tinker with in the examples directory. See the [fibonacci example](https://github.com/dfinity/bench/tree/main/examples/fibonacci).
//!
//! ### 1. Install the `canbench` binary.
//!
//! The `canbench` is what runs your canister's benchmarks.
//!
//! ```bash
//! cargo install canbench
//! ```
//!
//! ### 2. Add optional dependency to `Cargo.toml`
//!
//! Typically you do not want your benchmarks to be part of your canister when deploying it to the Internet Computer.
//! Therefore, we include `canbench` only as an optional dependency so that it's only included when running benchmarks.
//! For more information about optional dependencies, you can read more about them [here](https://doc.rust-lang.org/cargo/reference/features.html#optional-dependencies).
//!
//! ```toml
//! canbench_rs = { version = "x.y.z", optional = true }
//! ```
//!
//! ### 3. Add a configuration to `canbench.yml`
//!
//! The `canbench.yml` configuration file tells `canbench` how to build and run you canister.
//! Below is a typical configuration.
//! Note that we're compiling the canister with the `canbench` feature so that the benchmarking logic is included in the Wasm.
//!
//! ```yml
//! build_cmd:
//!   cargo build --release --target wasm32-unknown-unknown --features canbench-rs
//!
//! wasm_path:
//!   ./target/wasm32-unknown-unknown/release/<YOUR_CANISTER>.wasm
//! ```
//!
//! ### 4. Start benching! 🏋🏽
//!
//! Let's say we have a canister that exposes a `query` computing the fibonacci sequence of a given number.
//! Here's what that query can look like:
//!
//! ```rust
//! #[ic_cdk::query]
//! fn fibonacci(n: u32) -> u32 {
//!     if n == 0 {
//!         return 0;
//!     } else if n == 1 {
//!         return 1;
//!     }
//!
//!     let mut a = 0;
//!     let mut b = 1;
//!     let mut result = 0;
//!
//!     for _ in 2..=n {
//!         result = a + b;
//!         a = b;
//!         b = result;
//!     }
//!
//!     result
//! }
//! ```
//!
//! Now, let's add some benchmarks to this query:
//!
//! ```rust
//! #[cfg(feature = "canbench-rs")]
//! mod benches {
//!     use super::*;
//!     use canbench_rs::bench;
//!
//!     # fn fibonacci(_: u32) -> u32 { 0 }
//!
//!     #[bench]
//!     fn fibonacci_20() {
//!         // NOTE: the result is printed to prevent the compiler from optimizing the call away.
//!         println!("{:?}", fibonacci(20));
//!     }
//!
//!     #[bench]
//!     fn fibonacci_45() {
//!         // NOTE: the result is printed to prevent the compiler from optimizing the call away.
//!         println!("{:?}", fibonacci(45));
//!     }
//! }
//! ```
//!
//! Run `canbench`. You'll see an output that looks similar to this:
//!
//! ```txt
//! $ canbench
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_20 (new)
//!   total:
//!     instructions: 2301 (new)
//!     heap_increase: 0 pages (new)
//!     stable_memory_increase: 0 pages (new)
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_45 (new)
//!   total:
//!     instructions: 3088 (new)
//!     heap_increase: 0 pages (new)
//!     stable_memory_increase: 0 pages (new)
//!
//! ---------------------------------------------------
//!
//! Executed 2 of 2 benchmarks.
//! ```
//!
//! ### 5. Track performance regressions
//!
//! Notice that `canbench` reported the above benchmarks as "new".
//! `canbench` allows you to persist the results of these benchmarks.
//! In subsequent runs, `canbench` reports the performance relative to the last persisted run.
//!
//! Let's first persist the results above by running `canbench` again, but with the `persist` flag:
//!
//! ```txt
//! $ canbench --persist
//! ...
//! ---------------------------------------------------
//!
//! Executed 2 of 2 benchmarks.
//! Successfully persisted results to canbench_results.yml
//! ```
//!
//! Now, if we run `canbench` again, `canbench` will run the benchmarks, and will additionally report that there were no changes detected in performance.
//!
//! ```txt
//! $ canbench
//!     Finished release [optimized] target(s) in 0.34s
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_20
//!   total:
//!     instructions: 2301 (no change)
//!     heap_increase: 0 pages (no change)
//!     stable_memory_increase: 0 pages (no change)
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_45
//!   total:
//!     instructions: 3088 (no change)
//!     heap_increase: 0 pages (no change)
//!     stable_memory_increase: 0 pages (no change)
//!
//! ---------------------------------------------------
//!
//! Executed 2 of 2 benchmarks.
//! ```
//!
//! Let's try swapping out our implementation of `fibonacci` with an implementation that's miserably inefficient.
//! Replace the `fibonacci` function defined previously with the following:
//!
//! ```rust
//! #[ic_cdk::query]
//! fn fibonacci(n: u32) -> u32 {
//!     match n {
//!         0 => 1,
//!         1 => 1,
//!         _ => fibonacci(n - 1) + fibonacci(n - 2),
//!     }
//! }
//! ```
//!
//! And running `canbench` again, we see that it detects and reports a regression.
//!
//! ```txt
//! $ canbench
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_20
//!   total:
//!     instructions: 337.93 K (regressed by 14586.14%)
//!     heap_increase: 0 pages (no change)
//!     stable_memory_increase: 0 pages (no change)
//!
//! ---------------------------------------------------
//!
//! Benchmark: fibonacci_45
//!   total:
//!     instructions: 56.39 B (regressed by 1826095830.76%)
//!     heap_increase: 0 pages (no change)
//!     stable_memory_increase: 0 pages (no change)
//!
//! ---------------------------------------------------
//!
//! Executed 2 of 2 benchmarks.
//! ```
//!
//! Apparently, the recursive implementation is many orders of magnitude more expensive than the iterative implementation 😱
//! Good thing we found out before deploying this implementation to production.
//!
//! Notice that `fibonacci_45` took > 50B instructions, which is substantially more than the instruction limit given for a single message execution on the Internet Computer. `canbench` runs benchmarks in an environment that gives them up to 10T instructions.
//!
//! ## Additional Examples
//!
//! For the following examples, we'll be using the following canister code, which you can also find in the [examples](./examples/btreemap_vs_hashmap) directory.
//! This canister defines a simple state as well as a `pre_upgrade` function that stores that state into stable memory.
//!
//! ```rust
//! use candid::{CandidType, Encode};
//! use ic_cdk_macros::pre_upgrade;
//! use std::cell::RefCell;
//!
//! #[derive(CandidType)]
//! struct User {
//!     name: String,
//! }
//!
//! #[derive(Default, CandidType)]
//! struct State {
//!     users: std::collections::BTreeMap<u64, User>,
//! }
//!
//! thread_local! {
//!     static STATE: RefCell<State> = RefCell::new(State::default());
//! }
//!
//! #[pre_upgrade]
//! fn pre_upgrade() {
//!     // Serialize state.
//!     let bytes = STATE.with(|s| Encode!(s).unwrap());
//!
//!     // Write to stable memory.
//!     ic_cdk::api::stable::StableWriter::default()
//!         .write(&bytes)
//!         .unwrap();
//! }
//! ```
//!
//! ### Excluding setup code
//!
//! Let's say we want to benchmark how long it takes to run the `pre_upgrade` function. We can define the following benchmark:
//!
//! ```rust
//! #[cfg(feature = "canbench-rs")]
//! mod benches {
//!     use super::*;
//!     use canbench_rs::bench;
//!
//!     # fn initialize_state() {}
//!     # fn pre_upgrade() {}
//!
//!     #[bench]
//!     fn pre_upgrade_bench() {
//!         // Some function that fills the state with lots of data.
//!         initialize_state();
//!
//!         pre_upgrade();
//!     }
//! }
//! ```
//!
//! The problem with the above benchmark is that it's benchmarking both the `pre_upgrade` call _and_ the initialization of the state.
//! What if we're only interested in benchmarking the `pre_upgrade` call?
//! To address this, we can use the `#[bench(raw)]` macro to specify exactly which code we'd like to benchmark.
//!
//! ```rust
//! #[cfg(feature = "canbench-rs")]
//! mod benches {
//!     use super::*;
//!     use canbench_rs::bench;
//!
//!     # fn initialize_state() {}
//!     # fn pre_upgrade() {}
//!
//!     #[bench(raw)]
//!     fn pre_upgrade_bench() -> canbench_rs::BenchResult {
//!         // Some function that fills the state with lots of data.
//!         initialize_state();
//!
//!         // Only benchmark the pre_upgrade. Initializing the state isn't
//!         // included in the results of our benchmark.
//!         canbench_rs::bench_fn(pre_upgrade)
//!     }
//! }
//! ```
//!
//! Running `canbench` on the example above will benchmark only the code wrapped in `canbench_rs::bench_fn`, which in this case is the call to `pre_upgrade`.
//!
//! ```txt
//! $ canbench pre_upgrade_bench
//!
//! ---------------------------------------------------
//!
//! Benchmark: pre_upgrade_bench (new)
//!   total:
//!     instructions: 717.10 M (new)
//!     heap_increase: 519 pages (new)
//!     stable_memory_increase: 184 pages (new)
//!
//! ---------------------------------------------------
//!
//! Executed 1 of 1 benchmarks.
//! ```
//!
//! ### Granular Benchmarking
//!
//! Building on the example above, the `pre_upgrade` function does two steps:
//!
//! 1. Serialize the state
//! 2. Write to stable memory
//!
//! Suppose we're interested in understanding, within `pre_upgrade`, the resources spent in each of these steps.
//! `canbench` allows you to do more granular benchmarking using the `canbench_rs::bench_scope` function.
//! Here's how we can modify our `pre_upgrade` function:
//!
//!
//! ```rust
//! # use candid::{Encode, CandidType};
//! # use ic_cdk_macros::pre_upgrade;
//! # use std::cell::RefCell;
//! #
//! # #[derive(CandidType)]
//! # struct User {
//! #     name: String,
//! # }
//! #
//! # #[derive(Default, CandidType)]
//! # struct State {
//! #     users: std::collections::BTreeMap<u64, User>,
//! # }
//! #
//! # thread_local! {
//! #     static STATE: RefCell<State> = RefCell::new(State::default());
//! # }
//!
//! #[pre_upgrade]
//! fn pre_upgrade() {
//!     // Serialize state.
//!     let bytes = {
//!         #[cfg(feature = "canbench-rs")]
//!         let _p = canbench_rs::bench_scope("serialize_state");
//!         STATE.with(|s| Encode!(s).unwrap())
//!     };
//!
//!     // Write to stable memory.
//!     #[cfg(feature = "canbench-rs")]
//!     let _p = canbench_rs::bench_scope("writing_to_stable_memory");
//!     ic_cdk::api::stable::StableWriter::default()
//!         .write(&bytes)
//!         .unwrap();
//! }
//! ```
//!
//! In the code above, we've asked `canbench` to profile each of these steps separately.
//! Running `canbench` now, each of these steps are reported.
//!
//! ```txt
//! $ canbench pre_upgrade_bench
//!
//! ---------------------------------------------------
//!
//! Benchmark: pre_upgrade_bench (new)
//!   total:
//!     instructions: 717.11 M (new)
//!     heap_increase: 519 pages (new)
//!     stable_memory_increase: 184 pages (new)
//!
//!   serialize_state (profiling):
//!     instructions: 717.10 M (new)
//!     heap_increase: 519 pages (new)
//!     stable_memory_increase: 0 pages (new)
//!
//!   writing_to_stable_memory (profiling):
//!     instructions: 502 (new)
//!     heap_increase: 0 pages (new)
//!     stable_memory_increase: 184 pages (new)
//!
//! ---------------------------------------------------
//!
//! Executed 1 of 1 benchmarks.
//! ```
pub use canbench_rs_macros::bench;
use candid::CandidType;
use serde::{Deserialize, Serialize};
use std::cell::RefCell;
use std::collections::BTreeMap;

thread_local! {
    static SCOPES: RefCell<BTreeMap<&'static str, Measurement>> = RefCell::new(BTreeMap::new());
}

/// The results of a benchmark.
#[derive(Debug, PartialEq, Serialize, Deserialize, CandidType)]
pub struct BenchResult {
    /// A measurement for the entire duration of the benchmark.
    pub total: Measurement,

    /// Measurements for scopes.
    #[serde(default)]
    pub scopes: BTreeMap<String, Measurement>,
}

/// A benchmark measurement containing various stats.
#[derive(Debug, PartialEq, Serialize, Deserialize, CandidType, Clone)]
pub struct Measurement {
    /// The number of instructions.
    #[serde(default)]
    pub instructions: u64,

    /// The increase in heap (measured in pages).
    #[serde(default)]
    pub heap_increase: u64,

    /// The increase in stable memory (measured in pages).
    #[serde(default)]
    pub stable_memory_increase: u64,
}

/// Benchmarks the given function.
pub fn bench_fn<R>(f: impl FnOnce() -> R) -> BenchResult {
    reset();
    let start_heap = heap_size();
    let start_stable_memory = ic_cdk::api::stable::stable64_size();
    let start_instructions = instruction_count();
    f();
    let instructions = instruction_count() - start_instructions;
    let stable_memory_increase = ic_cdk::api::stable::stable64_size() - start_stable_memory;
    let heap_increase = heap_size() - start_heap;

    let total = Measurement {
        instructions,
        heap_increase,
        stable_memory_increase,
    };

    let scopes: std::collections::BTreeMap<_, _> = get_scopes_measurements()
        .into_iter()
        .map(|(k, v)| (k.to_string(), v))
        .collect();

    BenchResult { total, scopes }
}

/// Benchmarks the scope this function is declared in.
///
/// NOTE: It's important to assign this function, otherwise benchmarking won't work correctly.
///
/// # Correct Usage
///
/// ```
/// fn my_func() {
///   let _p = canbench_rs::bench_scope("my_scope");
///   // Do something.
/// }
/// ```
///
/// # Incorrect Usages
///
/// ```
/// fn my_func() {
///   let _ = canbench_rs::bench_scope("my_scope"); // Doesn't capture the scope.
///   // Do something.
/// }
/// ```
///
/// ```
/// fn my_func() {
///   canbench_rs::bench_scope("my_scope"); // Doesn't capture the scope.
///   // Do something.
/// }
/// ```
#[must_use]
pub fn bench_scope(name: &'static str) -> BenchScope {
    BenchScope::new(name)
}

/// An object used for benchmarking a specific scope.
pub struct BenchScope {
    name: &'static str,
    start_instructions: u64,
    start_stable_memory: u64,
    start_heap: u64,
}

impl BenchScope {
    fn new(name: &'static str) -> Self {
        let start_heap = heap_size();
        let start_stable_memory = ic_cdk::api::stable::stable64_size();
        let start_instructions = instruction_count();

        Self {
            name,
            start_instructions,
            start_stable_memory,
            start_heap,
        }
    }
}

impl Drop for BenchScope {
    fn drop(&mut self) {
        let instructions = instruction_count() - self.start_instructions;
        let stable_memory_increase =
            ic_cdk::api::stable::stable64_size() - self.start_stable_memory;
        let heap_increase = heap_size() - self.start_heap;

        SCOPES.with(|p| {
            let mut p = p.borrow_mut();
            let prev_scope = p.insert(
                self.name,
                Measurement {
                    instructions,
                    heap_increase,
                    stable_memory_increase,
                },
            );

            assert!(
                prev_scope.is_none(),
                "scope {} cannot be specified multiple times.",
                self.name
            );
        });
    }
}

// Clears all scope data.
fn reset() {
    SCOPES.with(|p| p.borrow_mut().clear());
}

// Returns the measurements for any declared scopes.
fn get_scopes_measurements() -> std::collections::BTreeMap<&'static str, Measurement> {
    SCOPES.with(|p| p.borrow().clone())
}

fn instruction_count() -> u64 {
    #[cfg(target_arch = "wasm32")]
    {
        ic_cdk::api::performance_counter(0)
    }

    #[cfg(not(target_arch = "wasm32"))]
    {
        // Consider using cpu time here.
        0
    }
}

fn heap_size() -> u64 {
    #[cfg(target_arch = "wasm32")]
    {
        core::arch::wasm32::memory_size(0) as u64
    }

    #[cfg(not(target_arch = "wasm32"))]
    {
        0
    }
}